Minimum Clique Partition in Unit Disk Graphs

被引:0
|
作者
Adrian Dumitrescu
János Pach
机构
[1] University of Wisconsin–Milwaukee,
[2] Ecole Polytechnique Fédérale de Lausanne and City College,undefined
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Unit disk graph; Clique partition;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in UDGs is known to be NP-hard and several constant factor approximations are known, including a recent PTAS. We present two improved approximation algorithms for MCP in UDGs with a realization: (I) A polynomial time approximation scheme (PTAS) running in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^2)}}$$\end{document}. This improves on a previous PTAS with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^4)}}$$\end{document} running time by Pirwani and Salavatipour (arXiv:0904.2203v1, 2009). (II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves on a ratio 3 algorithm with O(n2) running time by Cerioli et al. (Electron. Notes Discret. Math. 18:73–79, 2004).
引用
收藏
页码:399 / 411
页数:12
相关论文
共 50 条
  • [31] On coloring unit disk graphs
    Graf, A
    Stumpf, M
    Weissenfels, G
    ALGORITHMICA, 1998, 20 (03) : 277 - 293
  • [32] Routing in Unit Disk Graphs
    Haim Kaplan
    Wolfgang Mulzer
    Liam Roditty
    Paul Seiferth
    Algorithmica, 2018, 80 : 830 - 848
  • [33] On Guha and Khuller's Greedy Algorithm for Finding a Minimum CDS for Unit Disk Graphs
    Fujita, Satoshi
    2014 SECOND INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2014, : 60 - 67
  • [34] A PTAS for the minimum weighted dominating set problem with smooth weights on unit disk graphs
    Zhu, Xu
    Wang, Wei
    Shan, Shan
    Wang, Zhong
    Wu, Weili
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 23 (04) : 443 - 450
  • [35] Efficient sub-5 approximations for minimum dominating sets in unit disk graphs
    da Fonseca, Guilherme D.
    de Figueiredo, Celina M. H.
    Pereira de Sa, Vinicius G.
    Machado, Raphael C. S.
    THEORETICAL COMPUTER SCIENCE, 2014, 540 : 70 - 81
  • [36] A PTAS for the minimum weighted dominating set problem with smooth weights on unit disk graphs
    Xu Zhu
    Wei Wang
    Shan Shan
    Zhong Wang
    Weili Wu
    Journal of Combinatorial Optimization, 2012, 23 : 443 - 450
  • [37] Clique numbers of finite unit-quadrance graphs
    Krebs, Mike
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (01) : 1 - 20
  • [38] Clique numbers of finite unit-quadrance graphs
    Mike Krebs
    Journal of Algebraic Combinatorics, 2023, 57 : 1 - 20
  • [39] PARTITION OF GRAPHS WITH CONDITION ON THE CONNECTIVITY AND MINIMUM DEGREE
    HAJNAL, P
    COMBINATORICA, 1983, 3 (01) : 95 - 99
  • [40] Some approximation algorithms for the clique partition problem in weighted interval graphs
    Chen, Mingxia
    Li, Jianbo
    Li, Jianping
    Li, Weidong
    Wang, Lusheng
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 124 - 133