Minimum Clique Partition in Unit Disk Graphs

被引:0
|
作者
Adrian Dumitrescu
János Pach
机构
[1] University of Wisconsin–Milwaukee,
[2] Ecole Polytechnique Fédérale de Lausanne and City College,undefined
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Unit disk graph; Clique partition;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in UDGs is known to be NP-hard and several constant factor approximations are known, including a recent PTAS. We present two improved approximation algorithms for MCP in UDGs with a realization: (I) A polynomial time approximation scheme (PTAS) running in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^2)}}$$\end{document}. This improves on a previous PTAS with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^4)}}$$\end{document} running time by Pirwani and Salavatipour (arXiv:0904.2203v1, 2009). (II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves on a ratio 3 algorithm with O(n2) running time by Cerioli et al. (Electron. Notes Discret. Math. 18:73–79, 2004).
引用
收藏
页码:399 / 411
页数:12
相关论文
共 50 条
  • [1] Minimum Clique Partition in Unit Disk Graphs
    Dumitrescu, Adrian
    Pach, Janos
    GRAPHS AND COMBINATORICS, 2011, 27 (03) : 399 - 411
  • [2] A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs
    Imran A. Pirwani
    Mohammad R. Salavatipour
    Algorithmica, 2012, 62 : 1050 - 1072
  • [3] A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs
    Pirwani, Imran A.
    Salavatipour, Mohammad R.
    ALGORITHM THEORY - SWAT 2010, PROCEEDINGS, 2010, 6139 : 188 - 199
  • [4] A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs
    Pirwani, Imran A.
    Salavatipour, Mohammad R.
    ALGORITHMICA, 2012, 62 (3-4) : 1050 - 1072
  • [5] A NOTE ON MAXIMUM INDEPENDENT SETS AND MINIMUM CLIQUE PARTITIONS IN UNIT DISK GRAPHS AND PENNY GRAPHS: COMPLEXITY AND APPROXIMATION
    Cerioli, Marcia R.
    Faria, Luerbio
    Ferreira, Talita O.
    Protti, Fabio
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2011, 45 (03): : 331 - 346
  • [6] Minimum clique partition problem with constrained weight for interval graphs
    Li, Jianbo
    Chen, Mingxia
    Li, Jianping
    Li, Weidong
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 459 - 468
  • [7] EPTAS and Subexponential Algorithm for Maximum Clique on Disk and Unit Ball Graphs
    Bonamy, Marthe
    Bonnet, Edouard
    Bousquet, Nicolas
    Charbit, Pierre
    Giannopoulos, Panos
    Kim, Eun Jung
    Rzazewski, Pawel
    Sikora, Florian
    Thomasse, Stephan
    JOURNAL OF THE ACM, 2021, 68 (02)
  • [8] CLIQUE COVERING AND CLIQUE PARTITION IN GENERALIZATIONS OF LINE GRAPHS
    PRISNER, E
    DISCRETE APPLIED MATHEMATICS, 1995, 56 (01) : 93 - 98
  • [9] Tighter Approximation Bounds for Minimum CDS in Unit Disk Graphs
    Li, Minming
    Wan, Peng-Jun
    Yao, Frances
    ALGORITHMICA, 2011, 61 (04) : 1000 - 1021
  • [10] Tighter Approximation Bounds for Minimum CDS in Unit Disk Graphs
    Minming Li
    Peng-Jun Wan
    Frances Yao
    Algorithmica, 2011, 61 : 1000 - 1021