Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria

被引:0
|
作者
Thammajun L. Wood
Ting Gong
Lei Zhu
James Miller
Daniel S. Miller
Bei Yin
Thomas K. Wood
机构
[1] Pennsylvania State University,Department of Chemical Engineering
[2] Pennsylvania State University,Huck Institutes of the Life Sciences
[3] Dow Chemical Company,Department of Biochemistry and Molecular Biology
[4] Pennsylvania State University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Biofilm formation is an important problem for many industries. Desulfovibrio vulgaris is the representative sulfate-reducing bacterium (SRB) which causes metal corrosion in oil wells and drilling equipment, and the corrosion is related to its biofilm formation. Biofilms are extremely difficult to remove since the cells are cemented in a polymer matrix. In an effort to eliminate SRB biofilms, we examined the ability of supernatants from Pseudomonas aeruginosa PA14 to disperse SRB biofilms. We found that the P. aeruginosa supernatants dispersed more than 98% of the biofilm. To determine the biochemical basis of this SRB biofilm dispersal, we examined a series of P. aeruginosa mutants and found that mutants rhlA, rhlB, rhlI, and rhlR, defective in rhamnolipids production, had significantly reduced levels of SRB biofilm dispersal. Corroborating these results, purified rhamnolipids dispersed SRB biofilms, and rhamnolipids were detected in the P. aeruginosa supernatants. Hence, P. aeruginosa supernatants disperse SRB biofilms via rhamnolipids. To determine the genetic basis of how the P. aeruginosa supernatants disperse SRB biofilms, a whole transcriptomic analysis was conducted (RNA-seq); based on this analysis, we identified four proteins (DVUA0018, DVUA0034, DVUA0066, and DVUA0084) of the D. vulgaris megaplasmid that influence biofilm formation, with production of DVUA0066 (a putative phospholipase) reducing biofilm formation 5.6-fold. In addition, the supernatants of P. aeruginosa dispersed the SRB biofilms more readily than protease in M9 glucose minimum medium and were also effective against biofilms of Escherichia coli and Staphylococcus aureus.
引用
收藏
相关论文
共 50 条
  • [41] SULFATE-REDUCING BACTERIA IN THE PERIODONTAL POCKET
    VANDERHOEVEN, JS
    SCHAEKEN, MJM
    JOURNAL OF DENTAL RESEARCH, 1995, 74 : 587 - 587
  • [42] Reduction of molybdate by sulfate-reducing bacteria
    Biswas, Keka C.
    Woodards, Nicole A.
    Xu, Huifang
    Barton, Larry L.
    BIOMETALS, 2009, 22 (01) : 131 - 139
  • [43] Metallo proteins in sulfate-reducing bacteria
    Fritz, G
    Büchert, T
    Steuber, J
    Kroneck, PMH
    JOURNAL OF INORGANIC BIOCHEMISTRY, 1999, 74 (1-4) : 196 - 196
  • [44] SULFATE-REDUCING BACTERIA IN MARINE SEDIMENTS
    ZOBELL, CE
    RITTENBERG, SC
    JOURNAL OF MARINE RESEARCH, 1948, 7 (03) : 602 - 617
  • [45] THE NUTRITION AND PHYSIOLOGY OF SULFATE-REDUCING BACTERIA
    PARKES, RJ
    JOURNAL OF APPLIED BACTERIOLOGY, 1983, 55 (03): : R3 - R3
  • [46] ELECTROKINETIC PROPERTIES OF SULFATE-REDUCING BACTERIA
    ULANOVSKII, IV
    RUDENKO, EK
    SUPRUN, EA
    LEDENEV, AV
    MICROBIOLOGY, 1980, 49 (01) : 98 - 103
  • [47] PHYSIOLOGY AND ECOLOGY OF THE SULFATE-REDUCING BACTERIA
    GIBSON, GR
    JOURNAL OF APPLIED BACTERIOLOGY, 1990, 69 (06): : 769 - 797
  • [48] TESTING FOR THE PRESENCE OF SULFATE-REDUCING BACTERIA
    TATNALL, RE
    STANTON, KM
    EBERSOLE, RC
    MATERIALS PERFORMANCE, 1988, 27 (08) : 71 - 80
  • [49] Reduction of molybdate by sulfate-reducing bacteria
    Keka C. Biswas
    Nicole A. Woodards
    Huifang Xu
    Larry L. Barton
    BioMetals, 2009, 22 : 131 - 139
  • [50] SULFATE-REDUCING BACTERIA AND IMMOBILIZATION OF METALS
    PERRY, KA
    MARINE GEORESOURCES & GEOTECHNOLOGY, 1995, 13 (1-2) : 33 - 39