Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria

被引:0
|
作者
Thammajun L. Wood
Ting Gong
Lei Zhu
James Miller
Daniel S. Miller
Bei Yin
Thomas K. Wood
机构
[1] Pennsylvania State University,Department of Chemical Engineering
[2] Pennsylvania State University,Huck Institutes of the Life Sciences
[3] Dow Chemical Company,Department of Biochemistry and Molecular Biology
[4] Pennsylvania State University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Biofilm formation is an important problem for many industries. Desulfovibrio vulgaris is the representative sulfate-reducing bacterium (SRB) which causes metal corrosion in oil wells and drilling equipment, and the corrosion is related to its biofilm formation. Biofilms are extremely difficult to remove since the cells are cemented in a polymer matrix. In an effort to eliminate SRB biofilms, we examined the ability of supernatants from Pseudomonas aeruginosa PA14 to disperse SRB biofilms. We found that the P. aeruginosa supernatants dispersed more than 98% of the biofilm. To determine the biochemical basis of this SRB biofilm dispersal, we examined a series of P. aeruginosa mutants and found that mutants rhlA, rhlB, rhlI, and rhlR, defective in rhamnolipids production, had significantly reduced levels of SRB biofilm dispersal. Corroborating these results, purified rhamnolipids dispersed SRB biofilms, and rhamnolipids were detected in the P. aeruginosa supernatants. Hence, P. aeruginosa supernatants disperse SRB biofilms via rhamnolipids. To determine the genetic basis of how the P. aeruginosa supernatants disperse SRB biofilms, a whole transcriptomic analysis was conducted (RNA-seq); based on this analysis, we identified four proteins (DVUA0018, DVUA0034, DVUA0066, and DVUA0084) of the D. vulgaris megaplasmid that influence biofilm formation, with production of DVUA0066 (a putative phospholipase) reducing biofilm formation 5.6-fold. In addition, the supernatants of P. aeruginosa dispersed the SRB biofilms more readily than protease in M9 glucose minimum medium and were also effective against biofilms of Escherichia coli and Staphylococcus aureus.
引用
收藏
相关论文
共 50 条
  • [31] Oxygen defense in sulfate-reducing bacteria
    Dolla, Alain
    Fournier, Marjorie
    Dermoun, Zorah
    JOURNAL OF BIOTECHNOLOGY, 2006, 126 (01) : 87 - 100
  • [32] ENUMERATION AND ISOLATION OF SULFATE-REDUCING BACTERIA
    HERBERT, BN
    GILBERT, PD
    JOURNAL OF APPLIED BACTERIOLOGY, 1983, 55 (03): : R3 - R3
  • [33] Inhibition of sulfate-reducing bacteria with formate
    Voskuhl, L.
    Brusilova, D.
    Brauer, V. S.
    Meckenstock, R. U.
    FEMS MICROBIOLOGY ECOLOGY, 2022, 98 (01)
  • [34] AEROBIC RESPIRATION IN SULFATE-REDUCING BACTERIA
    DILLING, W
    CYPIONKA, H
    FEMS MICROBIOLOGY LETTERS, 1990, 71 (1-2) : 123 - 127
  • [35] SULFATE-REDUCING BACTERIA AND ANAEROBIC CORROSION
    HAMILTON, WA
    ANNUAL REVIEW OF MICROBIOLOGY, 1985, 39 : 195 - 217
  • [36] Sulfate-reducing bacteria and immobilization of metals
    Perry, K.A., 1600, Taylor & Francis Ltd, Basingstoke, United Kingdom (13): : 1 - 2
  • [37] SULFATE-REDUCING BACTERIA IN THE PERIODONTAL POCKET
    VANDERHOEVEN, JS
    VANDENKIEBOOM, CWA
    SCHAEKEN, MJM
    ORAL MICROBIOLOGY AND IMMUNOLOGY, 1995, 10 (05): : 288 - 290
  • [38] CATHODIC DEPOLARIZATION BY SULFATE-REDUCING BACTERIA
    COSTELLO, JA
    SOUTH AFRICAN JOURNAL OF SCIENCE, 1974, 70 (07) : 202 - 204
  • [39] OPTIMIZING SUBSTRATE FOR SULFATE-REDUCING BACTERIA
    CHANG, LK
    UPDEGRAFF, DM
    WILDEMAN, TR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 38 - CHED
  • [40] SULFATE-REDUCING BACTERIA IN BOVINE FECES
    CARLI, T
    DIKER, KS
    EYIGOR, A
    LETTERS IN APPLIED MICROBIOLOGY, 1995, 21 (04) : 228 - 229