PET-MR in patients with glioblastoma multiforme [PET-MR bei Patienten mit Glioblastoma multiforme]

被引:0
|
作者
Ertl-Wagner B. [1 ]
Ingrisch M. [1 ]
Niyazi M. [2 ]
Schnell O. [3 ]
Jansen N. [3 ]
Förster S. [4 ]
La Fougère C. [3 ]
机构
[1] Institut für Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universität, Campus Großhadern, Marchioninistr. 15
[2] Klinik für Strahlentherapie, Klinikum der Ludwig-Maximilians-Universität, Campus Großhadern, München
[3] Klinik für Nuklearmedizin, Klinikum der Ludwig-Maximilians-Universität, Campus Großhadern, München
[4] Klinik für Nuklearmedizin, Klinikum Rechts der Isar, Technische Universität, München
来源
Der Radiologe | 2013年 / 53卷 / 8期
关键词
18F-fluorodeoxyglucose; Amino acid tracer; Diffusion weighted MRI; Perfusion MRI; Therapy response;
D O I
10.1007/s00117-013-2500-y
中图分类号
学科分类号
摘要
Glioblastoma multiforme (GBM) is the most common and most aggressive primary tumor of the brain. In recent years newer therapeutic approaches have been developed. To allow for an optimized treatment planning it is important to precisely delineate necrotic tissue, edema and vital tumor tissue and to identify the most aggressive parts of the GBM. The magnetic resonance (MR) portion of an MR-positron emission tomography (PET) examination in patients with GBM should consist of both structural and functional sequences including diffusion-weighted and perfusion sequences. The use of 18F- fluorodeoxyglucose (18F-FDG) is limited in patients with gliomas as glucose metabolism is already physiologically high in parts of the brain but 18F-FDG is nevertheless a commonly used radiopharmaceutical for neuro-oncological questions. 18F-fluorothymidine reflects the cellular activity of thymidine kinase 1 and correlates with the expression of KI-67 as an index of mitotic activity. The nitroimidazole derivatives 18F-fluoromisonidazole and 18F-fluoroazomycin arabinoside (18F-FAZA) allow the detection of hypoxic areas within the tumor. In recent years amino acid tracers, such as 18F-fluoroethyltyrosine are increasingly being used in the diagnosis of gliomas. The simultaneous PET-MR image acquisition allows new approaches, e.g. motion correction by the simultaneous acquisition of MR data with a high temporal resolution and an improved quantification of the PET signal by integrating the results of functional MR sequences. Moreover, the simultaneous acquisition of these two time-consuming methods leads to reduced imaging times for this, often severely ill patient group. © 2013 Springer-Verlag Berlin Heidelberg. Schlüsselwörter: 18F-Fluordeoxyglukose Therapieansprechen Aminosäuretracer Diffusions-MRT Perfusions-MRT. © 2013 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:682 / 690
页数:8
相关论文
共 50 条
  • [41] Initial Characterization of the SAFIR Prototype PET-MR Scanner
    Ritzer, Christian
    Becker, Robert
    Buck, Alfred
    Commichau, Volker
    Debus, Jan
    Djambazov, Lubomir
    Eleftheriou, Afroditi
    Fischer, Jannis
    Fischer, Peter
    Ito, Mikiko
    Khateri, Parisa
    Lustermann, Werner
    Ritzert, Michael
    Roser, Ulf
    Rudin, Markus
    Sacco, Ilaria
    Tsoumpas, Charalampos
    Warnock, Geoffrey
    Wyss, Matthias
    Zagozdzinska-Bochenek, Agnieszka
    Weber, Bruno
    Dissertori, Gunther
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2020, 4 (05) : 613 - 621
  • [42] Imaging of Osteoarthritis by Conventional Radiography, MR Imaging, PET-Computed Tomography, and PET-MR Imaging
    Hayashi, Daichi
    Roemer, Frank W.
    Guermazi, Ali
    PET CLINICS, 2019, 14 (01) : 17 - +
  • [43] PET motion correction using simultaneous PET-MR acquisition and MR-derived motion fields
    Tsoumpas, Charalampos
    Mackewn, Jane
    King, Andrew
    Buerger, Christian
    Totman, John
    Schaeffter, Tobias
    Marsden, Paul
    JOURNAL OF NUCLEAR MEDICINE, 2009, 50 : 532 - 532
  • [44] Assessing non-inferiority of myocardial uptake on FDG PET-MR vs. PET-CT on simultaneously acquired whole body PET-MR scans
    Oldan, Jorge
    Brunken, Richard
    DiFilippo, Frank
    Shah, Shetal
    Obuchowski, Nancy
    Bolen, Michael
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [45] MR- and PET-driven motion correction for integrated PET-MR abdominal/thoracic imaging
    Fuerst, Sebastian
    Grimm, Robert
    Hong, Inki
    Souvatzoglou, Michael
    Casey, Michael
    Schwaiger, Markus
    Ziegler, Sibylle
    Nekolla, Stephan
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55
  • [46] "Low Dose MR" Dixon Technique for Imaging FDG PET-MR Lymphoma
    Mufti, Musa Ali
    Matthews, Robert
    Madu, Ezemonye
    Yaddanapudi, Kavitha
    Franceschi, Dinko
    WORLD JOURNAL OF NUCLEAR MEDICINE, 2022, 21 (02) : 99 - 105
  • [47] EANM guidelines for PET-CT and PET-MR routine quality control
    Koole, Michel
    Armstrong, Ian
    Krizsan, Aron K.
    Stromvall, Anne
    Visvikis, Dimitris
    Sattler, Bernhard
    Nekolla, Stephan G.
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2023, 33 (01): : 103 - 113
  • [48] Effect of geometrical constraints on PET performance in whole body simultaneous PET-MR
    Vandenberghe, S.
    Keereman, V.
    Staelens, S.
    Schulz, V.
    Marsden, P.
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 3808 - 3811
  • [49] Joint PET-MR respiratory motion models for clinical PET motion correction
    Manber, Richard
    Thielemans, Kris
    Hutton, Brian F.
    Wan, Simon
    McClelland, Jamie
    Barnes, Anna
    Arridge, Simon
    Ourselin, Sebastien
    Atkinson, David
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (17): : 6515 - 6530
  • [50] Impact of MR-based PET motion correction on the quantification of PET kinetic parameters in simultaneous cardiac PET-MR
    Petibon, Yoann
    Ebrahimi, Behzad
    Reese, Timothy
    Guehl, Nicolas
    Normandin, Marc
    Alpert, Nathaniel
    El Fakhri, Georges
    Ouyang, Jinsong
    JOURNAL OF NUCLEAR MEDICINE, 2016, 57