PET-MR in patients with glioblastoma multiforme [PET-MR bei Patienten mit Glioblastoma multiforme]

被引:0
|
作者
Ertl-Wagner B. [1 ]
Ingrisch M. [1 ]
Niyazi M. [2 ]
Schnell O. [3 ]
Jansen N. [3 ]
Förster S. [4 ]
La Fougère C. [3 ]
机构
[1] Institut für Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universität, Campus Großhadern, Marchioninistr. 15
[2] Klinik für Strahlentherapie, Klinikum der Ludwig-Maximilians-Universität, Campus Großhadern, München
[3] Klinik für Nuklearmedizin, Klinikum der Ludwig-Maximilians-Universität, Campus Großhadern, München
[4] Klinik für Nuklearmedizin, Klinikum Rechts der Isar, Technische Universität, München
来源
Der Radiologe | 2013年 / 53卷 / 8期
关键词
18F-fluorodeoxyglucose; Amino acid tracer; Diffusion weighted MRI; Perfusion MRI; Therapy response;
D O I
10.1007/s00117-013-2500-y
中图分类号
学科分类号
摘要
Glioblastoma multiforme (GBM) is the most common and most aggressive primary tumor of the brain. In recent years newer therapeutic approaches have been developed. To allow for an optimized treatment planning it is important to precisely delineate necrotic tissue, edema and vital tumor tissue and to identify the most aggressive parts of the GBM. The magnetic resonance (MR) portion of an MR-positron emission tomography (PET) examination in patients with GBM should consist of both structural and functional sequences including diffusion-weighted and perfusion sequences. The use of 18F- fluorodeoxyglucose (18F-FDG) is limited in patients with gliomas as glucose metabolism is already physiologically high in parts of the brain but 18F-FDG is nevertheless a commonly used radiopharmaceutical for neuro-oncological questions. 18F-fluorothymidine reflects the cellular activity of thymidine kinase 1 and correlates with the expression of KI-67 as an index of mitotic activity. The nitroimidazole derivatives 18F-fluoromisonidazole and 18F-fluoroazomycin arabinoside (18F-FAZA) allow the detection of hypoxic areas within the tumor. In recent years amino acid tracers, such as 18F-fluoroethyltyrosine are increasingly being used in the diagnosis of gliomas. The simultaneous PET-MR image acquisition allows new approaches, e.g. motion correction by the simultaneous acquisition of MR data with a high temporal resolution and an improved quantification of the PET signal by integrating the results of functional MR sequences. Moreover, the simultaneous acquisition of these two time-consuming methods leads to reduced imaging times for this, often severely ill patient group. © 2013 Springer-Verlag Berlin Heidelberg. Schlüsselwörter: 18F-Fluordeoxyglukose Therapieansprechen Aminosäuretracer Diffusions-MRT Perfusions-MRT. © 2013 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:682 / 690
页数:8
相关论文
共 50 条
  • [31] Multiplexing Kernelized Expectation Maximization Reconstruction for PET-MR
    Deidda, Daniel
    Aykroyd, Robert G.
    Tsoumpas, Charalampos
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [32] MR-based motion compensation in simultaneous cardiac PET-MR
    Petibon, Yoann
    Ouyang, Jinsong
    Zhu, Xuping
    Reese, Timothy
    Dagher, Joseph
    Catana, Ciprian
    El Fakhri, Georges
    JOURNAL OF NUCLEAR MEDICINE, 2012, 53
  • [33] Lesion Insertion Tool to Assess PET-MR Attenuation Correction Methods: Matched Contralateral Uptake Lesion Insertions in Pelvis PET-MR Data
    Natsuaki, Y.
    Leynes, A.
    Wangerin, K.
    Hamdi, M.
    Rajagopal, A.
    Laforest, R.
    Larson, P. E. Z.
    Hope, T. A.
    James, S. St.
    MEDICAL PHYSICS, 2020, 47 (06) : E635 - E635
  • [34] Diagnostic performance of simultaneous PET-MR versus PET-CT in oncology with an overview on clinical utility and referral pattern of PET-MR: a single institutional study
    Palaniswamy, Shanmuga Sundaram
    Subramanyam, Padma
    NUCLEAR MEDICINE COMMUNICATIONS, 2024, 45 (12) : 1022 - 1032
  • [35] In-vivo studies of tagged MR based PET motion correction in simultaneous PET-MR
    Chun, Se Young
    Moussallem, Elie
    Reese, Timothy
    Guerin, Bastien
    Catana, Ciprian
    Alpert, Nathaniel
    El Fakhri, Georges
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [36] PET-MR Joint Reconstruction with Information Theoretic Priors
    Yu, Yunhan
    Yao, Shulin
    Shi, Wang
    Liu, Yaqiang
    Ma, Tianyu
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [37] Assessment of motion correction strategies in simultaneous PET-MR
    Chun, Se Young
    Guerin, Bastien
    Cho, Sanghee
    Reese, Timothy
    Zhu, Xuping
    Ouyang, Jinsong
    Catana, Ciprian
    El Fakhri, Georges
    JOURNAL OF NUCLEAR MEDICINE, 2010, 51
  • [38] Brain PET-MR attenuation correction with deep learning
    Yaakub, S. N.
    McGinnity, C. J.
    Beck, K.
    Merida, I.
    Dunston, E.
    Muffoletto, M.
    Qureshi, A.
    Bhattacharya, S.
    MacKewn, J.
    Hammers, A.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 : 600 - 601
  • [39] Attenuation Correction Synthesis for Hybrid PET-MR Scanners
    Burgos, Ninon
    Cardoso, Manuel Jorge
    Modat, Marc
    Pedemonte, Stefano
    Dickson, John
    Barnes, Anna
    Duncan, John S.
    Atkinson, David
    Arridge, Simon R.
    Hutton, Brian F.
    Ourselin, Sebastien
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT I, 2013, 8149 : 147 - 154
  • [40] MR-guided joint reconstruction of activity and attenuation in brain PET-MR
    Mehranian, Abolfazl
    Zaidi, Habib
    Reader, Andrew J.
    NEUROIMAGE, 2017, 162 : 276 - 288