An odd hole is an induced odd cycle of length at least five. Let ℓ≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell \ge 2$$\end{document} be an integer, and let Gℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {G}}_\ell $$\end{document} denote the family of graphs which have girth 2ℓ+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\ell + 1$$\end{document} and have no holes of odd length at least 2ℓ+5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\ell +5$$\end{document}. In this paper, we prove that every graph G∈∪ℓ≥3Gℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G \in \cup _{\ell \ge 3}{\mathcal {G}}_\ell $$\end{document} is 4-colourable.
机构:
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing,210023, ChinaInstitute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing,210023, China
Wu, Di
Xu, Baogang
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing,210023, ChinaInstitute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing,210023, China
Xu, Baogang
Xu, Yian
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics, Southeast University, 2 SEU Road, Nanjing,211189, ChinaInstitute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing,210023, China
机构:
MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, HungaryIbaraki Univ, Hitachi, Ibaraki, Japan
Katona, Gyula Y.
Varga, Kitti
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, HungaryIbaraki Univ, Hitachi, Ibaraki, Japan