The Chromatic Number of a Graph with Two Odd Holes and an Odd Girth

被引:0
|
作者
Kaiyang Lan
Feng Liu
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] East China Normal University,Department of Mathematics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Chromatic number; Girth; Odd hole; 05C15; 05C38; 05C60;
D O I
暂无
中图分类号
学科分类号
摘要
An odd hole is an induced odd cycle of length at least five. Let ℓ≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 2$$\end{document} be an integer, and let Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_\ell $$\end{document} denote the family of graphs which have girth 2ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\ell + 1$$\end{document} and have no holes of odd length at least 2ℓ+5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\ell +5$$\end{document}. In this paper, we prove that every graph G∈∪ℓ≥3Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \in \cup _{\ell \ge 3}{\mathcal {G}}_\ell $$\end{document} is 4-colourable.
引用
收藏
相关论文
共 50 条
  • [41] Decomposition of a Graph into Two Disjoint Odd Subgraphs
    Mikio Kano
    Gyula Y. Katona
    Kitti Varga
    Graphs and Combinatorics, 2018, 34 : 1581 - 1588
  • [42] On coloring of graphs of girth 2l + 1 without longer odd holes
    Wu, Di
    Xu, Baogang
    Xu, Yian
    arXiv, 2022,
  • [43] Decomposition of a Graph into Two Disjoint Odd Subgraphs
    Kano, Mikio
    Katona, Gyula Y.
    Varga, Kitti
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1581 - 1588
  • [44] A New Upper Bound on the Chromatic Number of Graphs with No Odd Kt Minor
    Norin, Sergey
    Song, Zi-Xia
    COMBINATORICA, 2022, 42 (01) : 137 - 149
  • [45] Edge-disjoint odd cycles in graphs with small chromatic number
    Berge, C
    Reed, B
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (03) : 783 - +
  • [46] A New Upper Bound on the Chromatic Number of Graphs with No Odd Kt Minor
    Sergey Norin
    Zi-Xia Song
    Combinatorica, 2022, 42 : 137 - 149
  • [47] Lower bounds on the independence number of certain graphs of odd girth at least seven
    Pedersen, Anders Sune
    Rautenbach, Dieter
    Regen, Friedrich
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) : 143 - 151
  • [48] Superconnectivity of graphs with odd girth g and even girth h
    Balbuena, C.
    Garcia-Vazquez, P.
    Montejano, L. P.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) : 91 - 99
  • [49] On the λ′-optimality in graphs with odd girth g and even girth h
    Balbuena, C.
    Garcia-Vazquez, P.
    Montejano, L. P.
    Salas, J.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1041 - 1045
  • [50] Online coloring graphs with high girth and high odd girth
    Nagy-Gyorgy, J.
    OPERATIONS RESEARCH LETTERS, 2010, 38 (03) : 185 - 187