共 50 条
The Chromatic Number of a Graph with Two Odd Holes and an Odd Girth
被引:0
|作者:
Kaiyang Lan
Feng Liu
机构:
[1] Fuzhou University,Center for Discrete Mathematics
[2] East China Normal University,Department of Mathematics
来源:
关键词:
Chromatic number;
Girth;
Odd hole;
05C15;
05C38;
05C60;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
An odd hole is an induced odd cycle of length at least five. Let ℓ≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell \ge 2$$\end{document} be an integer, and let Gℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {G}}_\ell $$\end{document} denote the family of graphs which have girth 2ℓ+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\ell + 1$$\end{document} and have no holes of odd length at least 2ℓ+5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\ell +5$$\end{document}. In this paper, we prove that every graph G∈∪ℓ≥3Gℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G \in \cup _{\ell \ge 3}{\mathcal {G}}_\ell $$\end{document} is 4-colourable.
引用
下载
收藏
相关论文