The Chromatic Number of a Graph with Two Odd Holes and an Odd Girth

被引:0
|
作者
Kaiyang Lan
Feng Liu
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] East China Normal University,Department of Mathematics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Chromatic number; Girth; Odd hole; 05C15; 05C38; 05C60;
D O I
暂无
中图分类号
学科分类号
摘要
An odd hole is an induced odd cycle of length at least five. Let ℓ≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 2$$\end{document} be an integer, and let Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_\ell $$\end{document} denote the family of graphs which have girth 2ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\ell + 1$$\end{document} and have no holes of odd length at least 2ℓ+5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\ell +5$$\end{document}. In this paper, we prove that every graph G∈∪ℓ≥3Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \in \cup _{\ell \ge 3}{\mathcal {G}}_\ell $$\end{document} is 4-colourable.
引用
下载
收藏
相关论文
共 50 条
  • [21] On the chromatic number of a family of odd hole free graphs
    Song, Jialei
    Xu, Baogang
    arXiv, 2021,
  • [22] The maximum number of odd cycles in a planar graph
    Heath to Department of Mathematics and Statistics, California State Polytechnic University Pomona, Pomona
    CA, United States
    不详
    IA, United States
    不详
    AL, United States
    J. Graph Theory,
  • [23] Induced odd cycle packing number, independent sets, and chromatic number
    Dvorak, Zdenek
    Pekarek, Jakub
    JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 502 - 516
  • [24] Biregular Cages of Odd Girth
    Exoo, Geoffrey
    Jajcay, Robert
    JOURNAL OF GRAPH THEORY, 2016, 81 (01) : 50 - 56
  • [25] An odd square as a sum of an odd number of odd squares
    Chan, Heng Huat
    Cooper, Shaun
    Liaw, Wen-Chin
    ACTA ARITHMETICA, 2008, 132 (04) : 359 - 371
  • [26] On graphs with a large chromatic number that contain no small odd cycles
    Berlov S.L.
    Bogdanov I.I.
    Journal of Mathematical Sciences, 2012, 184 (5) : 573 - 578
  • [27] Total chromatic number of graphs of odd order and high degree
    Chew, KH
    DISCRETE MATHEMATICS, 1999, 205 (1-3) : 39 - 46
  • [28] A bound on the chromatic number using the longest odd cycle length
    Kenkre, Sreyash
    Vishwanathan, Sundar
    JOURNAL OF GRAPH THEORY, 2007, 54 (04) : 267 - 276
  • [29] Graphs with girth 9 and without longer odd holes are 3-colourable
    Wang, Yan
    Wu, Rong
    JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 871 - 886
  • [30] ODD DEGREE NUMBER FIELDS WITH ODD CLASS NUMBER
    Ho, Wei
    Shankar, Arul
    Varma, Ila
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (05) : 995 - 1047