The Chromatic Number of a Graph with Two Odd Holes and an Odd Girth

被引:0
|
作者
Kaiyang Lan
Feng Liu
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] East China Normal University,Department of Mathematics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Chromatic number; Girth; Odd hole; 05C15; 05C38; 05C60;
D O I
暂无
中图分类号
学科分类号
摘要
An odd hole is an induced odd cycle of length at least five. Let ℓ≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 2$$\end{document} be an integer, and let Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_\ell $$\end{document} denote the family of graphs which have girth 2ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\ell + 1$$\end{document} and have no holes of odd length at least 2ℓ+5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\ell +5$$\end{document}. In this paper, we prove that every graph G∈∪ℓ≥3Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \in \cup _{\ell \ge 3}{\mathcal {G}}_\ell $$\end{document} is 4-colourable.
引用
下载
收藏
相关论文
共 50 条
  • [1] The Chromatic Number of a Graph with Two Odd Holes and an Odd Girth
    Lan, Kaiyang
    Liu, Feng
    GRAPHS AND COMBINATORICS, 2023, 39 (06)
  • [2] On the chromatic number of graphs of odd girth without longer odd holes
    Wang, Hongyang
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 227 - 230
  • [3] Odd Chromatic Number of Graph Classes
    Belmonte, Remy
    Harutyunyan, Ararat
    Kohler, Noleen
    Melissinos, Nikolaos
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2023, 2023, 14093 : 44 - 58
  • [4] On the odd girth and the circular chromatic number of generalized Petersen graphs
    Amir Daneshgar
    Meysam Madani
    Journal of Combinatorial Optimization, 2017, 33 : 897 - 923
  • [5] On the odd girth and the circular chromatic number of generalized Petersen graphs
    Daneshgar, Amir
    Madani, Meysam
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (03) : 897 - 923
  • [6] The Odd Chromatic Number of a Planar Graph is at Most 8
    Petr, Jan
    Portier, Julien
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [7] The odd chromatic number of a toroidal graph is at most 9
    Tian, Fangyu
    Yin, Yuxue
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [8] The Odd Chromatic Number of a Planar Graph is at Most 8
    Jan Petr
    Julien Portier
    Graphs and Combinatorics, 2023, 39
  • [9] The circular chromatic number of series-parallel graphs of large odd girth
    Pan, ZS
    Zhu, XD
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 235 - 246
  • [10] The odd girth of the generalised Kneser graph
    Denley, T
    EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (06) : 607 - 611