Quiver Diagonalization and Open BPS States

被引:0
|
作者
Jakub Jankowski
Piotr Kucharski
Hélder Larraguível
Dmitry Noshchenko
Piotr Sułkowski
机构
[1] University of Wrocław,Institute of Theoretical Physics
[2] University of Warsaw,Institute of Mathematics
[3] Jagiellonian University,Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research
[4] University of Warsaw,Faculty of Physics
[5] University of Amsterdam,Institute of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that motivic Donaldson–Thomas invariants of a symmetric quiver Q, captured by the generating function PQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_Q$$\end{document}, can be encoded in another quiver Q(∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{(\infty )}$$\end{document} of (almost always) infinite size, whose only arrows are loops, and whose generating function PQ(∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{Q^{(\infty )}}$$\end{document} is equal to PQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_Q$$\end{document} upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson–Thomas and Labastida–Mariño–Ooguri–Vafa invariants that count open BPS states, as well as expressing motivic Donaldson–Thomas invariants of an arbitrary symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of m-loop quivers extends to arbitrary symmetric quivers.
引用
收藏
页码:1551 / 1584
页数:33
相关论文
共 50 条
  • [42] Construction and classification of novel BPS Wilson loops in quiver Chem-Simons-matter theories
    Ouyang, Hao
    Wu, Jun-Bao
    Zhang, Jia-ju
    NUCLEAR PHYSICS B, 2016, 910 : 496 - 527
  • [43] BPS states in omega background and integrability
    Bulycheva, Kseniya
    Chen, Heng-yu
    Gorsky, Alexander
    Koroteev, Peter
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10):
  • [44] Geometric engineering of (framed) BPS states
    Chuang, Wu-yen
    Diaconescu, Duiliu-Emanuel
    Manschot, Jan
    Moore, Gregory W.
    Soibelman, Yan
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (05) : 1063 - 1231
  • [45] Knots, BPS States, and Algebraic Curves
    Stavros Garoufalidis
    Piotr Kucharski
    Piotr Sułkowski
    Communications in Mathematical Physics, 2016, 346 : 75 - 113
  • [46] Knots, BPS States, and Algebraic Curves
    Garoufalidis, Stavros
    Kucharski, Piotr
    Sulkowski, Piotr
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (01) : 75 - 113
  • [47] A note on BPS vortex bound states
    Alonso-Izquierdo, A.
    Garcia Fuertes, W.
    Mateos Guilarte, J.
    PHYSICS LETTERS B, 2016, 753 : 29 - 33
  • [48] BPS states in omega background and integrability
    Kseniya Bulycheva
    Heng-yu Chen
    Alexander Gorsky
    Peter Koroteev
    Journal of High Energy Physics, 2012
  • [49] BPS states in the Ω-background and torus knots
    K. Bulycheva
    A. Gorsky
    Journal of High Energy Physics, 2014
  • [50] BPS states in N=3 superstrings
    Kounnas, C
    Kumar, A
    NUCLEAR PHYSICS B, 1998, 511 (1-2) : 216 - 242