Quiver Diagonalization and Open BPS States

被引:0
|
作者
Jakub Jankowski
Piotr Kucharski
Hélder Larraguível
Dmitry Noshchenko
Piotr Sułkowski
机构
[1] University of Wrocław,Institute of Theoretical Physics
[2] University of Warsaw,Institute of Mathematics
[3] Jagiellonian University,Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research
[4] University of Warsaw,Faculty of Physics
[5] University of Amsterdam,Institute of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that motivic Donaldson–Thomas invariants of a symmetric quiver Q, captured by the generating function PQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_Q$$\end{document}, can be encoded in another quiver Q(∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{(\infty )}$$\end{document} of (almost always) infinite size, whose only arrows are loops, and whose generating function PQ(∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{Q^{(\infty )}}$$\end{document} is equal to PQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_Q$$\end{document} upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson–Thomas and Labastida–Mariño–Ooguri–Vafa invariants that count open BPS states, as well as expressing motivic Donaldson–Thomas invariants of an arbitrary symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of m-loop quivers extends to arbitrary symmetric quivers.
引用
收藏
页码:1551 / 1584
页数:33
相关论文
共 50 条
  • [31] Semiclassical framed BPS states
    Moore, Gregory W.
    Royston, Andrew B.
    Van den Bleeken, Dieter
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [32] BPS States, Crystals, and Matrices
    Sulkowski, Piotr
    ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [33] BPS states, knots, and quivers
    Kucharski, Piotr
    Reineke, Markus
    Stosic, Marko
    Sulkowski, Piotr
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [34] BPS coherent states and localization
    Berenstein, David
    Wang, Shannon
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [35] BPS coherent states and localization
    David Berenstein
    Shannon Wang
    Journal of High Energy Physics, 2022
  • [36] BPS states and minimal surfaces
    Mikhailov, A
    NUCLEAR PHYSICS B, 1998, 533 (1-3) : 243 - 274
  • [37] Algebras, BPS states, and strings
    Harvey, JA
    Moore, G
    NUCLEAR PHYSICS B, 1996, 463 (2-3) : 315 - 368
  • [38] BPS states in matrix strings
    Gopakumar, R
    NUCLEAR PHYSICS B, 1997, 507 (03) : 609 - 620
  • [39] Semiclassical framed BPS states
    Gregory W. Moore
    Andrew B. Royston
    Dieter Van den Bleeken
    Journal of High Energy Physics, 2016
  • [40] The Quiver Approach to the BPS Spectrum of a 4d N=2 Gauge Theory
    Cecotti, Sergio
    STRING-MATH 2012, 2015, 90 : 3 - 17