Quiver Diagonalization and Open BPS States

被引:0
|
作者
Jakub Jankowski
Piotr Kucharski
Hélder Larraguível
Dmitry Noshchenko
Piotr Sułkowski
机构
[1] University of Wrocław,Institute of Theoretical Physics
[2] University of Warsaw,Institute of Mathematics
[3] Jagiellonian University,Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research
[4] University of Warsaw,Faculty of Physics
[5] University of Amsterdam,Institute of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that motivic Donaldson–Thomas invariants of a symmetric quiver Q, captured by the generating function PQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_Q$$\end{document}, can be encoded in another quiver Q(∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{(\infty )}$$\end{document} of (almost always) infinite size, whose only arrows are loops, and whose generating function PQ(∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{Q^{(\infty )}}$$\end{document} is equal to PQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_Q$$\end{document} upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson–Thomas and Labastida–Mariño–Ooguri–Vafa invariants that count open BPS states, as well as expressing motivic Donaldson–Thomas invariants of an arbitrary symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of m-loop quivers extends to arbitrary symmetric quivers.
引用
收藏
页码:1551 / 1584
页数:33
相关论文
共 50 条
  • [1] Quiver Diagonalization and Open BPS States
    Jankowski, Jakub
    Kucharski, Piotr
    Larraguivel, Helder
    Noshchenko, Dmitry
    Sulkowski, Piotr
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (02) : 1551 - 1584
  • [2] BPS states, refined indices, and quiver invariants
    Seung-Joo Lee
    Zhao-Long Wang
    Piljin Yi
    Journal of High Energy Physics, 2012
  • [3] BPS states, refined indices, and quiver invariants
    Lee, Seung-Joo
    Wang, Zhao-Long
    Yi, Piljin
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10):
  • [4] Toric quiver asymptotics and Mahler measure: N=2 BPS states
    Zahabi, Ali
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (07):
  • [5] Mutation symmetries in BPS quiver theories: building the BPS spectra
    El Hassan Saidi
    Journal of High Energy Physics, 2012
  • [6] Mutation symmetries in BPS quiver theories: building the BPS spectra
    Saidi, El Hassan
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (08):
  • [7] BPS Wilson loops and quiver varieties
    Drukker, Nadav
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [8] Toroidal and elliptic quiver BPS algebras and beyond
    Galakhov, Dmitry
    Li, Wei
    Yamazaki, Masahito
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [9] Toroidal and elliptic quiver BPS algebras and beyond
    Dmitry Galakhov
    Wei Li
    Masahito Yamazaki
    Journal of High Energy Physics, 2022
  • [10] Gauge/Bethe correspondence from quiver BPS algebras
    Galakhov, Dmitry
    Li, Wei
    Yamazaki, Masahito
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (11)