Blowup in Korteweg-de Vries-type systems

被引:0
|
作者
E. V. Yushkov
机构
[1] Lomonosov Moscow State University,
来源
关键词
Korteweg-de Vries-type system of equations; Boussinesq-type system; initial and boundary value problem; solvability global in time;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a pair Korteweg-de Vries system of the Boussinesq type and its symmetric analogue. Such systems, which describe the behavior of a liquid in a channel, are shown to have no solutions defined globally in time under certain conditions. Using the method of nonlinear capacity, we obtain sufficient conditions for the solution blowup and estimate the blowup time for both these systems and for a generalized multicomponent Korteweg-de Vries-type system.
引用
收藏
页码:1498 / 1506
页数:8
相关论文
共 50 条
  • [41] Hamiltonian structure for a class of parametric coupled systems of the Korteweg-de Vries type
    Sotomayor, Adrian
    Restuccia, Alvaro
    [J]. XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [42] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations
    Khader, M. M.
    Saad, Khaled M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 67 - 77
  • [44] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [45] Backlund transformations and soliton solutions for a (2+1)-dimensional Korteweg-de Vries-type equation in water waves
    Wang, Yun-Po
    Tian, Bo
    Wang, Ming
    Wang, Yu-Feng
    Sun, Ya
    Xie, Xi-Yang
    [J]. NONLINEAR DYNAMICS, 2015, 81 (04) : 1815 - 1821
  • [46] STABILITY FOR KORTEWEG-DE VRIES EQUATION
    MCKEAN, HP
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (03) : 347 - 353
  • [47] Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. CONTEMPORARY MATHEMATICS, 2020, 1 (05): : 365 - 392
  • [48] STOCHASTIC KORTEWEG-DE VRIES HIERARCHY
    BLASZAK, M
    [J]. ACTA PHYSICA POLONICA A, 1986, 70 (05) : 497 - 502
  • [49] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    [J]. NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [50] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)