On the Metastability of the 1-d Allen–Cahn Equation

被引:0
|
作者
Maria G. Westdickenberg
机构
[1] RWTH Aachen University,
关键词
Energy–energy-dissipation; Nonlinear PDE; Gradient flow; Dynamic metastability; 35K55; 49N99;
D O I
暂无
中图分类号
学科分类号
摘要
We apply an energy method for metastability, developed in an earlier work with Otto, to the Allen–Cahn equation on the line and a broad class of initial data. In the earlier work, we for simplicity considered the equation on (0,L)×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,L)\times (0,\infty )$$\end{document} with periodic boundary conditions and an initial condition with two simple zeros. In this paper we explain the implications of the metastability framework (slightly modified as in previous joint work with Scholtes) for the equation on R×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\times (0,\infty )$$\end{document} and a more general initial condition. Our goal is to make clear the strength of the metastability framework and to highlight the difference in the analysis between the second-order Allen–Cahn equation and the fourth-order Cahn–Hilliard equation.
引用
收藏
页码:1853 / 1879
页数:26
相关论文
共 50 条
  • [41] Some entire solutions of the Allen-Cahn equation
    Fukao, Y
    Morita, Y
    Ninomiya, H
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (01): : 15 - 32
  • [42] Symmetry of Entire Solutions to the Allen-Cahn Equation
    Gui, Changfeng
    Zhang, Fang
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 587 - 612
  • [43] Transition layer for the heterogeneous Allen-Cahn equation
    Mahmoudi, Fethi
    Malchiodi, Andrea
    Wei, Juncheng
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03): : 609 - 631
  • [44] Metastable speeds in the fractional Allen-Cahn equation
    Achleitner, Franz
    Kuehn, Christian
    Melenk, Jens M.
    Rieder, Alexander
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408
  • [45] Stability of Planar Waves in the Allen-Cahn Equation
    Matano, Hiroshi
    Nara, Mitsunori
    Taniguchi, Masaharu
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (09) : 976 - 1002
  • [46] A Harnack inequality for the parabolic Allen-Cahn equation
    Bailesteanu, Mihai
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (04) : 367 - 378
  • [47] Infinite transition solutions for an Allen-Cahn equation
    Li, Wen-Long
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 245
  • [48] THE ALLEN-CAHN EQUATION WITH NONLINEAR OF RADIAL SOLUTIONS
    Alfaro, Matthieu
    Jouan, Philippe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024,
  • [49] Geometrical image segmentation by the Allen-Cahn equation
    Benes, M
    Chalupecky, V
    Mikula, K
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 187 - 205
  • [50] Minimisers of the Allen-Cahn equation on hyperbolic graphs
    Mramor, Blaz
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (01)