On the Metastability of the 1-d Allen–Cahn Equation

被引:0
|
作者
Maria G. Westdickenberg
机构
[1] RWTH Aachen University,
关键词
Energy–energy-dissipation; Nonlinear PDE; Gradient flow; Dynamic metastability; 35K55; 49N99;
D O I
暂无
中图分类号
学科分类号
摘要
We apply an energy method for metastability, developed in an earlier work with Otto, to the Allen–Cahn equation on the line and a broad class of initial data. In the earlier work, we for simplicity considered the equation on (0,L)×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,L)\times (0,\infty )$$\end{document} with periodic boundary conditions and an initial condition with two simple zeros. In this paper we explain the implications of the metastability framework (slightly modified as in previous joint work with Scholtes) for the equation on R×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\times (0,\infty )$$\end{document} and a more general initial condition. Our goal is to make clear the strength of the metastability framework and to highlight the difference in the analysis between the second-order Allen–Cahn equation and the fourth-order Cahn–Hilliard equation.
引用
收藏
页码:1853 / 1879
页数:26
相关论文
共 50 条
  • [31] On the weakly degenerate Allen-Cahn equation
    Sonego, Maicon
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 361 - 371
  • [32] Global Dynamics of the Cahn-Hilliard/Allen-Cahn Equation
    Ma, Mingze
    Zhao, Xiaopeng
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (02) : 156 - 172
  • [33] ON THE EXISTENCE OF SOLUTION FOR A CAHN-HILLIARD/ALLEN-CAHN EQUATION
    Karali, Georgia
    Nagase, Yuko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (01): : 127 - 137
  • [34] The Cahn-Hilliard/Allen-Cahn equation with inertial and proliferation terms
    Sen, Zehra
    Khanmamedov, Azer
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [35] THE EXISTENCE OF GLOBAL ATTRACTOR FOR A CAHN-HILLIARD/ALLEN-CAHN EQUATION
    Tang, H.
    Liu, C.
    Zhao, Z.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03): : 643 - 658
  • [36] Optimal Control Problem for the Cahn–Hilliard/Allen–Cahn Equation with State Constraint
    Xiaoli Zhang
    Huilai Li
    Changchun Liu
    Applied Mathematics & Optimization, 2020, 82 : 721 - 754
  • [37] Metastability of the Cahn-Hilliard equation in one space dimension
    Scholtes, Sebastian
    Westdickenberg, Maria G.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) : 1528 - 1575
  • [38] Metastability and Layer Dynamics for the Hyperbolic Relaxation of the Cahn–Hilliard Equation
    Raffaele Folino
    Corrado Lattanzio
    Corrado Mascia
    Journal of Dynamics and Differential Equations, 2021, 33 : 75 - 110
  • [39] Stochastic Allen-Cahn equation with logarithmic potential
    Bertacco, Federico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [40] The hyperbolic Allen-Cahn equation: exact solutions
    Nizovtseva, I. G.
    Galenko, P. K.
    Alexandrov, D. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (43)