A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques

被引:0
|
作者
Richa Vij
Sakshi Arora
机构
[1] Shri Mata Vaishno Devi University,School of Computer Science & Engineering
关键词
Diabetic retinopathy; Retinal fundus image segmentation; Deep learning; Blood vessels; Retinal lesions; Optic disc; Optic cup;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation is an essential requirement to accurately access diabetic retinopathy (DR) and it becomes extremely time-consuming and challenging to detect manually. As a result, an automatic retinal fundus image segmentation (RFIS) system is required to precisely define the region of interest and help ophthalmologists in the rapid diagnosis of DR. This systematic review provides a comprehensive overview of the development of deep learning (DL) based approach for RFIS to diagnose DR at an early stage. This review is fivefold: (1) retinal datasets, (2) pre-processing approaches, (3) DR segmentation and detection methods, (4) performance evaluation measures, and (5) proposed methodology. Articles on RFIS for DR detection were identified using the query “Deep Learning Techniques”, “Diabetic Retinopathy”, and “RFIS”, alone and in combination using PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until 2021 using PRISMA principle. Approximately 340 publications were searched and 115 relevant studies focused on the DL approaches for RFIS for DR diagnosis were chosen for study. According to the survey, 66% of researchers employed DL approaches for Blood vessel (BV) segmentation, 36% of researchers used DL approaches for lesion detection, and 15% of researchers used DL approaches for optic disc and optic cup (OD & OC) segmentation for DR Diagnosis. This systematic review provides detailed literature of the state-of-the-art relevant articles for RFIS of BV, Lesions, OD & OC for non-proliferative DR diagnosis and discusses future directions to improve the performance of DR and overcome research challenges. Finally, this article highlights the outline of the proposed work to improve the accuracy of existing models.
引用
收藏
页码:2211 / 2256
页数:45
相关论文
共 50 条
  • [41] Review on diabetic retinopathy with deep learning methods
    Shekar, Shreya
    Satpute, Nitin
    Gupta, Aditya
    [J]. JOURNAL OF MEDICAL IMAGING, 2021, 8 (06)
  • [42] Deep learning in the grading of diabetic retinopathy: A review
    Tajudin, Nurul Mirza Afiqah
    Kipli, Kuryati
    Mahmood, Muhammad Hamdi
    Lim, Lik Thai
    Mat, Dayang Azra Awang
    Sapawi, Rohana
    Sahari, Siti Kudnie
    Lias, Kasumawati
    Jali, Suriati Khartini
    Hoque, Mohammed Enamul
    [J]. IET COMPUTER VISION, 2022, 16 (08) : 667 - 682
  • [43] Automated detection of severe diabetic retinopathy using deep learning method
    Zhang, Xiao
    Li, Fan
    Li, Donghong
    Wei, Qijie
    Han, Xiaoxu
    Zhang, Bilei
    Chen, Huan
    Zhang, Yongpeng
    Mo, Bin
    Hu, Bojie
    Ding, Dayong
    Li, Xirong
    Yu, Weihong
    Chen, Youxin
    [J]. GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 260 (03) : 849 - 856
  • [44] Diabetic Retinopathy Detection Using Deep Learning Multistage Training Method
    Guefrachi, Sarra
    Echtioui, Amira
    Hamam, Habib
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [45] Automated detection of severe diabetic retinopathy using deep learning method
    Xiao Zhang
    Fan li
    Donghong Li
    Qijie Wei
    Xiaoxu Han
    Bilei Zhang
    Huan Chen
    Yongpeng Zhang
    Bin Mo
    Bojie Hu
    Dayong Ding
    Xirong Li
    Weihong Yu
    Youxin Chen
    [J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260 : 849 - 856
  • [46] Deep learning model using classification for diabetic retinopathy detection: an overview
    Muthusamy, Dharmalingam
    Palani, Parimala
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (07)
  • [47] Cross-Domain Diabetic Retinopathy Detection Using Deep Learning
    Sengupta, Sourya
    Singh, Amitojdeep
    Zelek, John
    Lakshminarayanan, Vasudevan
    [J]. APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [48] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Syed, Saba Raoof
    Durai, M. A. Saleem
    [J]. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [49] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Saba Raoof Syed
    Saleem Durai M A
    [J]. Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [50] Diabetic Retinopathy Detection Using Deep Learning with Optimized Feature Selection
    Sapra, Varun
    Sapra, Luxmi
    Bhardwaj, Akashdeep
    Almogren, Ahmad
    Bharany, Salil
    Rehman, Ateeq Ur
    Ouahada, Khmaies
    [J]. TRAITEMENT DU SIGNAL, 2024, 41 (02) : 781 - 790