A diagnosis model for detection and classification of diabetic retinopathy using deep learning

被引:1
|
作者
Syed, Saba Raoof [1 ]
Durai, M. A. Saleem [1 ]
机构
[1] Vellore Inst Technol, SCOPE, Vellore 632014, Tamil Nadu, India
关键词
Diabetes mellitus (DM); Diabetic retinopathy (DR); Deep learning; Retinal fundus image; Lesion segmentation; Classification; SEGMENTATION;
D O I
10.1007/s13721-023-00432-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetes mellitus (DM) is an immense progressive disease that affects the usage of blood glucose as energy, resulting in surplus glucose in the blood. If prolonged diabetes, it causes damage to both larger and smaller blood vessels, known as macrovascular and microvascular complications, respectively. The main objective of this paper is to develop an automated method for the detection, segmentation, and severity classification of type 2 diabetes mellitus (T2DM) microvascular complication Diabetic Retinopathy (DR) using the EyePACS dataset. An RU-Net (Residual U-Net) is proposed for segmentation, and a CCNN (Concatenated Convolutional Neural Network) for multi-class classification of DR. The proposed classification method recorded 0.9881% and 0.9683% accuracy for benchmark and real-time data. The result demonstrates that the proposed model is appropriate to assist physicians in the detection and classification of DR accurately and promptly.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Saba Raoof Syed
    Saleem Durai M A
    [J]. Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [2] Deep learning model using classification for diabetic retinopathy detection: an overview
    Muthusamy, Dharmalingam
    Palani, Parimala
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (07)
  • [3] Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy
    Mohanty, Cheena
    Mahapatra, Sakuntala
    Acharya, Biswaranjan
    Kokkoras, Fotis
    Gerogiannis, Vassilis C.
    Karamitsos, Ioannis
    Kanavos, Andreas
    [J]. SENSORS, 2023, 23 (12)
  • [4] Diabetic Retinopathy Classification Using Deep Learning
    Sathwik, Abbaraju Sai
    Agarwal, Raghav
    Ajith Jubilson, E.
    Basa, Santi Swarup
    [J]. EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9
  • [5] Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model
    Shankar, K.
    Sait, Abdul Rahaman Wahab
    Gupta, Deepak
    Lakshmanaprabu, S. K.
    Khanna, Ashish
    Pandey, Hari Mohan
    [J]. PATTERN RECOGNITION LETTERS, 2020, 133 : 210 - 216
  • [6] Deep Learning for Detection and Severity Classification of Diabetic Retinopathy
    Jain, Anuj
    Jalui, Arnav
    Jasani, Jahanvi
    Lahoti, Yash
    Karani, Ruhina
    [J]. PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [7] Diabetic Retinopathy Detection using Deep Learning
    Mane, Deepak
    Ashtagi, Rashmi
    Jotrao, Rutuja
    Bhise, Pratik
    Shinde, Prathamesh
    Kadam, Pratik
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (02) : 18 - 27
  • [8] Diabetic Retinopathy Detection using Deep Learning
    Nguyen, Quang H.
    Muthuraman, Ramasamy
    Singh, Laxman
    Sen, Gopa
    Anh Cuong Tran
    Nguyen, Binh P.
    Chua, Matthew
    [J]. ICMLSC 2020: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, 2020, : 103 - 107
  • [9] Enhancing diabetic retinopathy classification using deep learning
    Alwakid, Ghadah
    Gouda, Walaa
    Humayun, Mamoona
    Jhanjhi, N. Z.
    [J]. DIGITAL HEALTH, 2023, 9
  • [10] Hard Exudates Detection for Diabetic Retinopathy Early Diagnosis Using Deep Learning
    Jancy, P. Leela
    Lazha, A.
    Prabha, R.
    Sridevi, S.
    Thenmozhi, T.
    [J]. SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2021, 2022, 93 : 309 - 319