Phonon linewidths in YNi2B2C

被引:0
|
作者
L. Pintschovius
F. Weber
W. Reichardt
A. Kreyssig
R. Heid
D. Reznik
O. Stockert
K. Hradil
机构
[1] Institut für Festkörperphysik,Forschungszentrum Karlsruhe
[2] Universität Karlsruhe (TH),Physikalisches Institut
[3] Technische Universität Dresden,Institut für Festkörperphysik
[4] Iowa State University,Ames Laboratory
[5] CE-Saclay,Laboratoire Léon Brillouin
[6] Max-Planck-Institut für Chem. Physik fester Stoffe,Institut für physikalische Chemie, Aussenstelle FRM
[7] Universität Göttingen,II
来源
Pramana | 2008年 / 71卷
关键词
Electron-phonon coupling; density functional theory; inelastic neutron scattering; 63.20.dd; 63.20.dk; 63.20.kd;
D O I
暂无
中图分类号
学科分类号
摘要
Phonons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental verification of such predictions is feasible only for compounds with very strong electron-phonon coupling. YN2B2C was chosen as a test example because it is a conventional superconductor with a fairly high Tc (15.2 K). Inelastic neutron scattering experiments did largely confirm the theoretical predictions. Moreover, they revealed a strong temperature dependence of the linewidths of some phonons with particularly strong electron-phonon coupling which can as yet only qualitatively be accounted for by theory. For such phonons, marked changes of the phonon frequencies and linewidths were observed from room temperature down to 15 K. Further changes were observed on entering into the superconducting state. These changes can, however, not be described simply by a change of the phonon linewidth.
引用
收藏
页码:687 / 693
页数:6
相关论文
共 50 条
  • [41] Nanocrystal formation, amorphization and superconductivity in YNi2B2C
    Ledig, L
    Hough, D
    Oertel, CG
    Eckert, J
    Skrotzki, W
    JOURNAL OF ALLOYS AND COMPOUNDS, 1999, 285 (1-2) : 27 - 36
  • [42] MAGNETIC PHASE-DIAGRAM OF YNI2B2C
    RAO, TVC
    MISHRA, PK
    RAVIKUMAR, G
    SAHNI, VC
    GHOSH, K
    RAMAKRISHNAN, S
    GROVER, AK
    CHANDRA, G
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1995, 249 (3-4): : 271 - 288
  • [43] B-11 NMR IN YNI2B2C SUPERCONDUCTOR
    BORSA, F
    HU, Q
    KIM, KH
    SUH, BJ
    TORGESON, DR
    CANFIELD, PC
    XU, M
    ZHONG, B
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1994, 235 : 2547 - 2548
  • [45] Local field distribution in YNi2B2C superconductor
    Kim, DH
    Lee, KH
    Seo, SW
    Han, KS
    Mean, BJ
    Lee, M
    Cho, BK
    Lee, SI
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2000, 341 : 2137 - 2138
  • [46] Core electron spectroscopic studies of YNi2B2C
    Boske, T
    Kielwein, M
    Knupfer, M
    Barman, SR
    Behr, G
    Buchgeister, M
    Golden, MS
    Fink, J
    Singh, DJ
    Pickett, WE
    SOLID STATE COMMUNICATIONS, 1996, 98 (09) : 813 - 817
  • [47] Positron-lifetime studies in YNi2B2C
    Sundar, CS
    Bharathi, A
    Hariharan, Y
    Radhakrishnan, TS
    Hossain, Z
    Nagarajan, R
    Gupta, LC
    Vijayaraghavan, R
    PHYSICAL REVIEW B, 1996, 53 (06) : R2971 - R2974
  • [48] Core electron spectroscopic studies of YNi2B2C
    Boske, T
    Kielwein, M
    Knupfer, M
    Barman, SR
    Behr, G
    Buchgeister, M
    Golden, MS
    Fink, J
    Singh, DJ
    Pickett, WE
    SOLID STATE COMMUNICATIONS, 1996, 99 (01) : 23 - 27
  • [49] Velocity measurements of the dendritic instability in YNi2B2C
    Biehler, B
    Runge, BU
    Wimbush, SC
    Holzapfel, B
    Leiderer, P
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2005, 18 (04): : 385 - 387
  • [50] Flux Line Lattice Structure in YNi2B2C
    Kawano-Furukawa, Hazuki
    Ohira-Kawamura, Seiko
    Tsukagoshi, Hitomi
    Kobayashi, Chiyako
    Nagata, Takashi
    Sakiyama, Naoki
    Yoshizawa, Hideki
    Yethiraj, Mohana
    Suzuki, Jin-ichi
    Takeya, Hiroyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (10)