Phonon linewidths in YNi2B2C

被引:0
|
作者
L. Pintschovius
F. Weber
W. Reichardt
A. Kreyssig
R. Heid
D. Reznik
O. Stockert
K. Hradil
机构
[1] Institut für Festkörperphysik,Forschungszentrum Karlsruhe
[2] Universität Karlsruhe (TH),Physikalisches Institut
[3] Technische Universität Dresden,Institut für Festkörperphysik
[4] Iowa State University,Ames Laboratory
[5] CE-Saclay,Laboratoire Léon Brillouin
[6] Max-Planck-Institut für Chem. Physik fester Stoffe,Institut für physikalische Chemie, Aussenstelle FRM
[7] Universität Göttingen,II
来源
Pramana | 2008年 / 71卷
关键词
Electron-phonon coupling; density functional theory; inelastic neutron scattering; 63.20.dd; 63.20.dk; 63.20.kd;
D O I
暂无
中图分类号
学科分类号
摘要
Phonons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental verification of such predictions is feasible only for compounds with very strong electron-phonon coupling. YN2B2C was chosen as a test example because it is a conventional superconductor with a fairly high Tc (15.2 K). Inelastic neutron scattering experiments did largely confirm the theoretical predictions. Moreover, they revealed a strong temperature dependence of the linewidths of some phonons with particularly strong electron-phonon coupling which can as yet only qualitatively be accounted for by theory. For such phonons, marked changes of the phonon frequencies and linewidths were observed from room temperature down to 15 K. Further changes were observed on entering into the superconducting state. These changes can, however, not be described simply by a change of the phonon linewidth.
引用
收藏
页码:687 / 693
页数:6
相关论文
共 50 条
  • [21] C-13 NMR in YNi2B2C
    Saito, T
    Mizuno, K
    Koyama, K
    Endo, K
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 835 - 836
  • [22] Square flux lines in YNi2B2C
    Yethiraj, M
    Paul, DM
    Tomy, CV
    Thompson, JR
    PHYSICAL REVIEW B, 1998, 58 (22) : 14767 - 14770
  • [23] Ultrasonic study on superconducting YNi2B2C
    Isida, S
    Matsushita, A
    Takeya, H
    Suzuki, M
    PHYSICA C, 2001, 349 (1-2): : 150 - 154
  • [24] Vortex lattice transitions in YNi2B2C
    SJ Levett
    CD Dewhurst
    DMcK Paul
    Pramana, 2002, 58 : 913 - 917
  • [25] Anomalous vortex dynamics in YNi2B2C
    Okuma, S.
    Ichimura, T.
    Takeya, H.
    Hirata, K.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2009, 469 (15-20): : 1093 - 1095
  • [26] Effect of hydrogen on superconductivity in YNi2B2C
    Godart, C
    Hossain, Z
    Gaillet, L
    Nagarajan, R
    Gupta, LC
    PHYSICA B-CONDENSED MATTER, 1996, 223-24 (1-4) : 76 - 78
  • [27] Observation of band dispersion in YNi2B2C
    Poirier, DM
    Olson, CG
    Lynch, DW
    Schmidt, M
    Cho, BK
    Canfield, PC
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1995, 56 (12) : 1881 - 1882
  • [28] Properties of YNi2B2C superconducting thin films
    Vaglio, R
    Andreone, A
    Aruta, C
    Cassinese, A
    Fontana, F
    Crabtree, GW
    Iavarone, M
    DeWilde, Y
    Maritato, L
    Attanasio, C
    Coccorese, C
    Salluzzo, M
    Salvato, M
    PHYSICAL REVIEW B, 1997, 56 (02): : 934 - 939
  • [29] SUPERCONDUCTING ENERGY-GAP IN YNI2B2C
    EKINO, T
    FUJII, H
    KOSUGI, M
    ZENITANI, Y
    AKIMITSU, J
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1994, 235 : 2529 - 2530
  • [30] Electrical resistivity of YNi2B2C with boron deficiencies
    Lipp, D
    Gladun, A
    Bartkowski, K
    Belger, A
    Paufler, P
    Behr, G
    PHYSICA B, 2000, 284 (284): : 1103 - 1104