Stratospheric water vapor: an important climate feedback

被引:0
|
作者
Antara Banerjee
Gabriel Chiodo
Michael Previdi
Michael Ponater
Andrew J. Conley
Lorenzo M. Polvani
机构
[1] Columbia University,Department of Applied Physics and Applied Mathematics
[2] University of Colorado Boulder,Cooperative Institute for Research in Environmental Sciences
[3] National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division,Department of Earth and Environmental Sciences
[4] Lamont Doherty Earth Observatory,Deutsches Zentrum für Luft
[5] Institut für Physik der Atmosphäre, und Raumfahrt (DLR)
[6] National Center for Atmospheric Research,undefined
来源
Climate Dynamics | 2019年 / 53卷
关键词
Stratospheric water vapor; Climate feedback; Climate change; Partial radiative perturbation; Radiative kernel; CMIP5 models;
D O I
暂无
中图分类号
学科分类号
摘要
The role of stratospheric water vapor (SWV) changes, in response to increasing CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}, as a feedback component of quantitative significance for climate sensitivity has remained controversial. Here, we calculate the SWV climate feedback under abrupt CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} quadrupling in the CMIP5 ensemble of models. All models robustly show a moistening of the stratosphere, causing a global mean net stratosphere adjusted radiative perturbation of 0.89±0.27Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.89\pm 0.27\,\hbox {Wm}^{-2}$$\end{document} at the reference tropopause. The stratospheric temperature adjustment is a crucial component of this radiative perturbation. The associated climate feedback is 0.17±0.05Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.17\pm 0.05\,\hbox {Wm}^{-2}\,\hbox{K}^{-1}$$\end{document}, with a considerable inter-model range of 0.12–0.28 Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}. Taking into account the rise in tropopause height under 4×CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times \hbox {CO}_2$$\end{document} slightly reduces the feedback to 0.15±0.04Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.15\pm 0.04\,\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}, with a range of 0.10–0.26Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.26\,\hbox {Wm}^{-2} \,\hbox {K}^{-1}$$\end{document}. The SWV radiative perturbation peaks in the midlatitudes and not the tropics: this is due primarily to increases in SWV in the extratropical lowermost stratosphere, which cause the majority (over three quarters) of the global mean feedback. Based on these results, we suggest an increased focus on understanding drivers of water vapor trends in the extratropical lowermost stratosphere. We conclude that the SWV feedback is important, being on the same order of magnitude as the global mean surface albedo and cloud feedbacks in the multi-model mean.
引用
收藏
页码:1697 / 1710
页数:13
相关论文
共 50 条
  • [41] On the influence of stratospheric water vapor changes on the tropospheric circulation
    Joshi, MM
    Charlton, AJ
    Scaife, AA
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (09)
  • [42] Low stratospheric water vapor measured by an airborne DIAL
    Ehret, G
    Fix, A
    Poberaj, G
    Assion, A
    Kiemle, C
    Hoinka, KP
    Busen, R
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1462 - 1464
  • [43] Estimates of the Water Vapor Climate Feedback during El Nino-Southern Oscillation
    Dessler, A. E.
    Wong, S.
    JOURNAL OF CLIMATE, 2009, 22 (23) : 6404 - 6412
  • [44] Isotopic composition of stratospheric water vapor: Measurements and photochemistry
    Johnson, DG
    Jucks, KW
    Traub, WA
    Chance, KV
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D11) : 12211 - 12217
  • [45] RADIOMETRIC OBSERVATIONS OF VARIABILITY OF LOWER STRATOSPHERIC WATER VAPOR
    KUHN, PM
    STEARNS, LP
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (04): : 383 - +
  • [46] Changes in water vapor and aerosols and their relation to stratospheric ozone
    Rosenlof, Karen H.
    COMPTES RENDUS GEOSCIENCE, 2018, 350 (07) : 376 - 383
  • [47] Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor
    Soden, BJ
    Wetherald, RT
    Stenchikov, GL
    Robock, A
    SCIENCE, 2002, 296 (5568) : 727 - 730
  • [48] Impacts of tropical tropopause warming on the stratospheric water vapor
    Yan Xia
    Yi Huang
    Yongyun Hu
    Jun Yang
    Climate Dynamics, 2019, 53 : 3409 - 3418
  • [49] Lower stratospheric water vapor measured by UARS MLS
    Pumphrey, HC
    Clark, HL
    Harwood, RS
    GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (12) : 1691 - 1694
  • [50] An important constraint on tropical cloud - climate feedback
    Hartmann, DL
    Larson, K
    GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (20)