Stratospheric water vapor: an important climate feedback

被引:0
|
作者
Antara Banerjee
Gabriel Chiodo
Michael Previdi
Michael Ponater
Andrew J. Conley
Lorenzo M. Polvani
机构
[1] Columbia University,Department of Applied Physics and Applied Mathematics
[2] University of Colorado Boulder,Cooperative Institute for Research in Environmental Sciences
[3] National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division,Department of Earth and Environmental Sciences
[4] Lamont Doherty Earth Observatory,Deutsches Zentrum für Luft
[5] Institut für Physik der Atmosphäre, und Raumfahrt (DLR)
[6] National Center for Atmospheric Research,undefined
来源
Climate Dynamics | 2019年 / 53卷
关键词
Stratospheric water vapor; Climate feedback; Climate change; Partial radiative perturbation; Radiative kernel; CMIP5 models;
D O I
暂无
中图分类号
学科分类号
摘要
The role of stratospheric water vapor (SWV) changes, in response to increasing CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}, as a feedback component of quantitative significance for climate sensitivity has remained controversial. Here, we calculate the SWV climate feedback under abrupt CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} quadrupling in the CMIP5 ensemble of models. All models robustly show a moistening of the stratosphere, causing a global mean net stratosphere adjusted radiative perturbation of 0.89±0.27Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.89\pm 0.27\,\hbox {Wm}^{-2}$$\end{document} at the reference tropopause. The stratospheric temperature adjustment is a crucial component of this radiative perturbation. The associated climate feedback is 0.17±0.05Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.17\pm 0.05\,\hbox {Wm}^{-2}\,\hbox{K}^{-1}$$\end{document}, with a considerable inter-model range of 0.12–0.28 Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}. Taking into account the rise in tropopause height under 4×CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times \hbox {CO}_2$$\end{document} slightly reduces the feedback to 0.15±0.04Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.15\pm 0.04\,\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}, with a range of 0.10–0.26Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.26\,\hbox {Wm}^{-2} \,\hbox {K}^{-1}$$\end{document}. The SWV radiative perturbation peaks in the midlatitudes and not the tropics: this is due primarily to increases in SWV in the extratropical lowermost stratosphere, which cause the majority (over three quarters) of the global mean feedback. Based on these results, we suggest an increased focus on understanding drivers of water vapor trends in the extratropical lowermost stratosphere. We conclude that the SWV feedback is important, being on the same order of magnitude as the global mean surface albedo and cloud feedbacks in the multi-model mean.
引用
收藏
页码:1697 / 1710
页数:13
相关论文
共 50 条
  • [22] WATER VAPOR - STRATOSPHERIC INJECTION BY THUNDERSTORMS
    KUHN, PM
    LOJKO, MS
    PETERSEN, EV
    SCIENCE, 1971, 174 (4016) : 1319 - &
  • [23] The role of water vapor feedback in unperturbed climate variability and global warming
    Hall, A
    Manabe, S
    JOURNAL OF CLIMATE, 1999, 12 (08) : 2327 - 2346
  • [24] CO2 AND CLIMATE - WHERE IS THE WATER-VAPOR FEEDBACK
    IDSO, SB
    ARCHIVES FOR METEOROLOGY GEOPHYSICS AND BIOCLIMATOLOGY SERIES B-THEORETICAL AND APPLIED CLIMATOLOGY, 1982, 31 (04): : 325 - 329
  • [25] Water-vapor climate feedback inferred from climate fluctuations, 2003-2008
    Dessler, A. E.
    Zhang, Z.
    Yang, P.
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (20)
  • [26] Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry
    Stenke, A
    Grewe, V
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 : 1257 - 1272
  • [27] Stratospheric water vapor affecting atmospheric circulation
    Charlesworth, Edward
    Ploeger, Felix
    Birner, Thomas
    Baikhadzhaev, Rasul
    Abalos, Marta
    Abraham, Nathan Luke
    Akiyoshi, Hideharu
    Bekki, Slimane
    Dennison, Fraser
    Joeckel, Patrick
    Keeble, James
    Kinnison, Doug
    Morgenstern, Olaf
    Plummer, David
    Rozanov, Eugene
    Strode, Sarah
    Zeng, Guang
    Egorova, Tatiana
    Riese, Martin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [28] INFLUENCE OF WATER VAPOR ON STRATOSPHERIC RADIATION BUDGET
    DRAYSON, SR
    KUHN, WR
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1968, 49 (08) : 842 - &
  • [30] Stratospheric water vapor affecting atmospheric circulation
    Edward Charlesworth
    Felix Plöger
    Thomas Birner
    Rasul Baikhadzhaev
    Marta Abalos
    Nathan Luke Abraham
    Hideharu Akiyoshi
    Slimane Bekki
    Fraser Dennison
    Patrick Jöckel
    James Keeble
    Doug Kinnison
    Olaf Morgenstern
    David Plummer
    Eugene Rozanov
    Sarah Strode
    Guang Zeng
    Tatiana Egorova
    Martin Riese
    Nature Communications, 14