Stratospheric water vapor: an important climate feedback

被引:0
|
作者
Antara Banerjee
Gabriel Chiodo
Michael Previdi
Michael Ponater
Andrew J. Conley
Lorenzo M. Polvani
机构
[1] Columbia University,Department of Applied Physics and Applied Mathematics
[2] University of Colorado Boulder,Cooperative Institute for Research in Environmental Sciences
[3] National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division,Department of Earth and Environmental Sciences
[4] Lamont Doherty Earth Observatory,Deutsches Zentrum für Luft
[5] Institut für Physik der Atmosphäre, und Raumfahrt (DLR)
[6] National Center for Atmospheric Research,undefined
来源
Climate Dynamics | 2019年 / 53卷
关键词
Stratospheric water vapor; Climate feedback; Climate change; Partial radiative perturbation; Radiative kernel; CMIP5 models;
D O I
暂无
中图分类号
学科分类号
摘要
The role of stratospheric water vapor (SWV) changes, in response to increasing CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}, as a feedback component of quantitative significance for climate sensitivity has remained controversial. Here, we calculate the SWV climate feedback under abrupt CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} quadrupling in the CMIP5 ensemble of models. All models robustly show a moistening of the stratosphere, causing a global mean net stratosphere adjusted radiative perturbation of 0.89±0.27Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.89\pm 0.27\,\hbox {Wm}^{-2}$$\end{document} at the reference tropopause. The stratospheric temperature adjustment is a crucial component of this radiative perturbation. The associated climate feedback is 0.17±0.05Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.17\pm 0.05\,\hbox {Wm}^{-2}\,\hbox{K}^{-1}$$\end{document}, with a considerable inter-model range of 0.12–0.28 Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}. Taking into account the rise in tropopause height under 4×CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times \hbox {CO}_2$$\end{document} slightly reduces the feedback to 0.15±0.04Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.15\pm 0.04\,\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}, with a range of 0.10–0.26Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.26\,\hbox {Wm}^{-2} \,\hbox {K}^{-1}$$\end{document}. The SWV radiative perturbation peaks in the midlatitudes and not the tropics: this is due primarily to increases in SWV in the extratropical lowermost stratosphere, which cause the majority (over three quarters) of the global mean feedback. Based on these results, we suggest an increased focus on understanding drivers of water vapor trends in the extratropical lowermost stratosphere. We conclude that the SWV feedback is important, being on the same order of magnitude as the global mean surface albedo and cloud feedbacks in the multi-model mean.
引用
收藏
页码:1697 / 1710
页数:13
相关论文
共 50 条
  • [1] Stratospheric water vapor: an important climate feedback
    Banerjee, Antara
    Chiodo, Gabriel
    Previdi, Michael
    Ponater, Michael
    Conley, Andrew J.
    Polvani, Lorenzo M.
    CLIMATE DYNAMICS, 2019, 53 (3-4) : 1697 - 1710
  • [2] Stratospheric water vapor feedback
    Dessler, A. E.
    Schoeberl, M. R.
    Wang, T.
    Davis, S. M.
    Rosenlof, K. H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (45) : 18087 - 18091
  • [3] Is the climate sensitivity to ozone perturbations enhanced by stratospheric water vapor feedback?
    Stuber, N
    Ponater, M
    Sausen, R
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (15) : 2887 - 2890
  • [4] Stratospheric Water Vapor Feedback Disclosed by a Locking Experiment
    Huang, Yi
    Wang, Yuwei
    Huang, Han
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
  • [5] Assessing the climate impact of trends in stratospheric water vapor
    Forster, PMD
    Shine, KP
    GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (06) : 10 - 1
  • [6] Climate and ozone response to increased stratospheric water vapor
    Shindell, DT
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (08) : 1551 - 1554
  • [7] Water vapor feedback in climate models
    Cess, RD
    SCIENCE, 2005, 310 (5749) : 795 - 796
  • [8] Stratospheric water vapor and climate: Sensitivity to the representation in radiation codes
    Maycock, A. C.
    Shine, K. P.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [9] The Effect of Convective Injection of Ice on Stratospheric Water Vapor in a Changing Climate
    Smith, Jacob W.
    Bushell, Andrew C.
    Butchart, Neal
    Haynes, Peter H.
    Maycock, Amanda C.
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (09)
  • [10] Stratospheric water vapor trends in a coupled chemistry-climate model
    Tian, WS
    Chipperfield, MP
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (06)