2D Quaternionic Time-Harmonic Maxwell System in Elliptic Coordinates

被引:0
|
作者
Ricardo Abreu–Blaya
Rafael Ávila–Ávila
Juan Bory–Reyes
Ramón M. Rodríguez–Dagnino
机构
[1] Universidad de Holguín,Facultad de Informática y Matemática
[2] Universidad de Oriente,Departamento de Matemática
[3] Tecnológico de Monterrey,Departamento de Ingeniería Eléctrica y Computacional
来源
关键词
Maxwell equations; Quaternionic analysis; elliptic coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the 2D time–harmonic Maxwell equations in elliptic coordinates through certain quaternionic perturbed Dirac operator. The main goal is aimed to analyze an electromagnetic Dirichlet problem for a curvilinear polygon with rectifiable boundary in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document}. In addition, we provide an integral representation formula for electromagnetic fields that resembles the classical Stratton-Chu formula. The importance of the problem for applications makes it worthy of consideration.
引用
收藏
页码:255 / 270
页数:15
相关论文
共 50 条
  • [41] An iterative method for time-harmonic integral Maxwell's equations
    Collino, F
    Després, B
    COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 171 - 181
  • [42] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [43] Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium
    Bartsch, Thomas
    Mederski, Jaroslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 4304 - 4333
  • [44] OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING
    El Bouajaji, M.
    Dolean, V.
    Gander, M. J.
    Lanteri, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2048 - A2071
  • [45] Wire approximation for Poisson and time-harmonic Maxwell equations.
    Rogier, Francois
    Roussel, Jean-Francois
    Volpert, Dominique
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) : 633 - 636
  • [46] THE ENERGY METHOD FOR CONSTRUCTING TIME-HARMONIC SOLUTIONS TO THE MAXWELL EQUATIONS
    Denisenko, V. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (02) : 207 - 221
  • [47] Spectral elements for the integral equations of time-harmonic Maxwell problems
    Demaldent, Edouard
    Levadoux, David P.
    Cohen, Gary
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (09) : 3001 - 3010
  • [48] Two-grid methods for time-harmonic Maxwell equations
    Zhong, Liuqiang
    Shu, Shi
    Wang, Junxian
    Xu, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (01) : 93 - 111
  • [49] Domain decomposition algorithms for time-harmonic Maxwell equations with damping
    Rodriguez, AA
    Valli, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 825 - 848
  • [50] An adaptive multilevel method for time-harmonic Maxwell equations with singularities
    Chen, Zhiming
    Wang, Long
    Zheng, Weiying
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01): : 118 - 138