2D Quaternionic Time-Harmonic Maxwell System in Elliptic Coordinates

被引:0
|
作者
Ricardo Abreu–Blaya
Rafael Ávila–Ávila
Juan Bory–Reyes
Ramón M. Rodríguez–Dagnino
机构
[1] Universidad de Holguín,Facultad de Informática y Matemática
[2] Universidad de Oriente,Departamento de Matemática
[3] Tecnológico de Monterrey,Departamento de Ingeniería Eléctrica y Computacional
来源
关键词
Maxwell equations; Quaternionic analysis; elliptic coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the 2D time–harmonic Maxwell equations in elliptic coordinates through certain quaternionic perturbed Dirac operator. The main goal is aimed to analyze an electromagnetic Dirichlet problem for a curvilinear polygon with rectifiable boundary in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document}. In addition, we provide an integral representation formula for electromagnetic fields that resembles the classical Stratton-Chu formula. The importance of the problem for applications makes it worthy of consideration.
引用
收藏
页码:255 / 270
页数:15
相关论文
共 50 条
  • [21] Multiplicative block preconditioner for the time-harmonic Maxwell equations
    Huang, Zhuo-Hong
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (09): : 144 - 152
  • [23] GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS
    Caro, Pedro
    Zhou, Ting
    ANALYSIS & PDE, 2014, 7 (02): : 375 - 405
  • [24] Adaptive enriched geometry independent field approximation for 2D time-harmonic acoustics
    Jansari, Chintan
    Videla, Javier
    Natarajan, Sundararajan
    Bordas, Stephane P. A.
    Atroshchenko, Elena
    COMPUTERS & STRUCTURES, 2022, 263
  • [25] An improved time-harmonic 2D eddy current finite element H formulation
    Corona-Sanchez, Manuel A.
    Melgoza-Vazquez, Enrique
    Maximov, Serguei
    Escarela-Perez, Rafael
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [26] The Leontovich boundary value problem for the time-harmonic Maxwell equations
    Ammari, H
    Latiri-Grouz, C
    Nédélec, JC
    ASYMPTOTIC ANALYSIS, 1998, 18 (1-2) : 33 - 47
  • [27] Preconditioners for the discretized time-harmonic Maxwell equations in mixed form
    Greif, Chen
    Schoetzau, Dominik
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (04) : 281 - 297
  • [28] A domain decomposition approach for heterogeneous time-harmonic Maxwell equations
    Alonso, A
    Valli, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 143 (1-2) : 97 - 112
  • [29] Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic materials
    Eberhard, JP
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [30] Ground state solutions for semilinear time-harmonic Maxwell equations
    Tang, Xianhua
    Qin, Dongdong
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)