2D Quaternionic Time-Harmonic Maxwell System in Elliptic Coordinates

被引:0
|
作者
Ricardo Abreu–Blaya
Rafael Ávila–Ávila
Juan Bory–Reyes
Ramón M. Rodríguez–Dagnino
机构
[1] Universidad de Holguín,Facultad de Informática y Matemática
[2] Universidad de Oriente,Departamento de Matemática
[3] Tecnológico de Monterrey,Departamento de Ingeniería Eléctrica y Computacional
来源
关键词
Maxwell equations; Quaternionic analysis; elliptic coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the 2D time–harmonic Maxwell equations in elliptic coordinates through certain quaternionic perturbed Dirac operator. The main goal is aimed to analyze an electromagnetic Dirichlet problem for a curvilinear polygon with rectifiable boundary in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document}. In addition, we provide an integral representation formula for electromagnetic fields that resembles the classical Stratton-Chu formula. The importance of the problem for applications makes it worthy of consideration.
引用
收藏
页码:255 / 270
页数:15
相关论文
共 50 条
  • [1] 2D Quaternionic Time-Harmonic Maxwell System in Elliptic Coordinates
    Abreu-Blaya, Ricardo
    Avila-Avila, Rafael
    Bory-Reyes, Juan
    Rodriguez-Dagnino, Ramon M.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (02) : 255 - 270
  • [2] Dirichlet Type Problem for 2D Quaternionic Time-Harmonic Maxwell System in Fractal Domains
    Perez, Yudier Pena
    Blaya, Ricardo Abreu
    Bosch, Paul
    Reyes, Juan Bory
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [3] QUATERNIONIC TIME-HARMONIC MAXWELL OPERATOR
    KRAVCHENKO, VV
    SHAPIRO, MV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17): : 5017 - 5031
  • [4] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [5] High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations
    El Bouajaji, Mohamed
    Lanteri, Stephane
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (13) : 7241 - 7251
  • [6] Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations
    Li, Liang
    Lanteri, Stephane
    Perrussel, Ronan
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 32 (03) : 1112 - 1138
  • [7] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [8] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [9] On an inverse boundary value problem for a nonlinear time-harmonic Maxwell system
    Carstea, Catalin, I
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (03): : 395 - 408
  • [10] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215