Unchained polygons and the N-body problem

被引:0
|
作者
A. Chenciner
J. Féjoz
机构
[1] Université R. Diderot (Paris VII),Département de Mathématiques
[2] Observatoire de Paris,IMCCE (UMR 8028), Astronomie et Systèmes dynamiques
[3] Université P. & M. Curie (Paris VI),Institut de Mathématiques (UMR 7586)
来源
关键词
-body problem; relative equilibrium; Lyapunov family; symmetry; action minimization; periodic and quasiperiodic solutions; 34C25; 37G40; 70F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study both theoretically and numerically the Lyapunov families which bifurcate in the vertical direction from a horizontal relative equilibrium in ℝ3. As explained in [1], very symmetric relative equilibria thus give rise to some recently studied classes of periodic solutions. We discuss the possibility of continuing these families globally as action minimizers in a rotating frame where they become periodic solutions with particular symmetries. A first step is to give estimates on intervals of the frame rotation frequency over which the relative equilibrium is the sole absolute action minimizer: this is done by generalizing to an arbitrary relative equilibrium the method used in [2] by V. Batutello and S. Terracini.
引用
收藏
页码:64 / 115
页数:51
相关论文
共 50 条
  • [41] N-BODY PROBLEM OF CELESTIAL MECHANICS
    SAARI, DG
    CELESTIAL MECHANICS, 1976, 14 (01): : 11 - 17
  • [42] SCATTERING APPROACH TO N-BODY PROBLEM
    OMNES, R
    PHYSICAL REVIEW, 1968, 165 (04): : 1265 - &
  • [43] N-BODY PROBLEM IN GENERAL RELATIVITY
    SPYROU, N
    ASTROPHYSICAL JOURNAL, 1975, 197 (03): : 725 - 743
  • [44] ON THE SINGULARITIES OF THE CURVED n-BODY PROBLEM
    Diacu, Florin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) : 2249 - 2264
  • [45] On the n-body problem on surfaces of revolution
    Stoica, Cristina
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (10) : 6191 - 6225
  • [46] New orbits for the n-body problem
    Vanderbei, RJ
    ASTRODYNAMICS, SPACE MISSIONS, AND CHAOS, 2004, 1017 : 422 - 433
  • [47] Geodesic Rays of the N-Body Problem
    Burgos, J. M.
    Maderna, E.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 243 (02) : 807 - 827
  • [48] COMPUTATIONAL STRUCTURE OF THE N-BODY PROBLEM
    KATZENELSON, J
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (04): : 787 - 815
  • [49] Array languages and the N-body problem
    Cockshott, P.
    Gdura, Y.
    Keir, P.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (04): : 935 - 951
  • [50] Evolving Trajectories of the N-body Problem
    Tsang, Jeffrey
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3726 - 3733