Unchained polygons and the N-body problem

被引:0
|
作者
A. Chenciner
J. Féjoz
机构
[1] Université R. Diderot (Paris VII),Département de Mathématiques
[2] Observatoire de Paris,IMCCE (UMR 8028), Astronomie et Systèmes dynamiques
[3] Université P. & M. Curie (Paris VI),Institut de Mathématiques (UMR 7586)
来源
关键词
-body problem; relative equilibrium; Lyapunov family; symmetry; action minimization; periodic and quasiperiodic solutions; 34C25; 37G40; 70F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study both theoretically and numerically the Lyapunov families which bifurcate in the vertical direction from a horizontal relative equilibrium in ℝ3. As explained in [1], very symmetric relative equilibria thus give rise to some recently studied classes of periodic solutions. We discuss the possibility of continuing these families globally as action minimizers in a rotating frame where they become periodic solutions with particular symmetries. A first step is to give estimates on intervals of the frame rotation frequency over which the relative equilibrium is the sole absolute action minimizer: this is done by generalizing to an arbitrary relative equilibrium the method used in [2] by V. Batutello and S. Terracini.
引用
收藏
页码:64 / 115
页数:51
相关论文
共 50 条