Unchained polygons and the N-body problem

被引:0
|
作者
A. Chenciner
J. Féjoz
机构
[1] Université R. Diderot (Paris VII),Département de Mathématiques
[2] Observatoire de Paris,IMCCE (UMR 8028), Astronomie et Systèmes dynamiques
[3] Université P. & M. Curie (Paris VI),Institut de Mathématiques (UMR 7586)
来源
关键词
-body problem; relative equilibrium; Lyapunov family; symmetry; action minimization; periodic and quasiperiodic solutions; 34C25; 37G40; 70F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study both theoretically and numerically the Lyapunov families which bifurcate in the vertical direction from a horizontal relative equilibrium in ℝ3. As explained in [1], very symmetric relative equilibria thus give rise to some recently studied classes of periodic solutions. We discuss the possibility of continuing these families globally as action minimizers in a rotating frame where they become periodic solutions with particular symmetries. A first step is to give estimates on intervals of the frame rotation frequency over which the relative equilibrium is the sole absolute action minimizer: this is done by generalizing to an arbitrary relative equilibrium the method used in [2] by V. Batutello and S. Terracini.
引用
下载
收藏
页码:64 / 115
页数:51
相关论文
共 50 条
  • [1] Unchained polygons and the N-body problem
    Chenciner, A.
    Fejoz, J.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01): : 64 - 115
  • [2] THE N-BODY PROBLEM
    ADOMIAN, G
    FOUNDATIONS OF PHYSICS LETTERS, 1993, 6 (06) : 597 - 602
  • [3] N-BODY PROBLEM
    VETROVEC, M
    ACTA CIENTIFICA VENEZOLANA, 1968, 19 (01): : 24 - &
  • [4] INVARIANCE AND N-BODY PROBLEM
    LOGAN, JD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (01) : 191 - 197
  • [5] The quantum N-body problem
    Hunziker, W
    Sigal, IM
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) : 3448 - 3510
  • [6] Symmetries in N-body problem
    Xia, Zhihong
    EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE, 2008, 1043 : 126 - 132
  • [7] THE N-BODY PROBLEM IN ASTRONOMY
    AGUILAR, LA
    REVISTA MEXICANA DE FISICA, 1992, 38 (05) : 701 - 738
  • [8] The solution of the n-body problem
    Diacu, F
    MATHEMATICAL INTELLIGENCER, 1996, 18 (03): : 66 - 70
  • [9] On the dihedral n-body problem
    Ferrario, Davide L.
    Portaluri, Alessandro
    NONLINEARITY, 2008, 21 (06) : 1307 - 1321
  • [10] ON THE INTEGRABILITY OF THE N-BODY PROBLEM
    SOKOLOV, LL
    KHOLSHEVNIKOV, KV
    SOVIET ASTRONOMY LETTERS, 1986, 12 (04): : 235 - 237