Hamiltonian Cycles in Normal Cayley Graphs

被引:0
|
作者
Juan José Montellano-Ballesteros
Anahy Santiago Arguello
机构
[1] Instituto de Matemáticas,
[2] UNAM,undefined
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Cayley graph; Hamiltonian cycle; Normal connection set; 05C45; 05C99;
D O I
暂无
中图分类号
学科分类号
摘要
It has been conjecture that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document} we have that g-1Sg=S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^{-1}Sg = S$$\end{document}. In this paper we present some conditions on the order of the elements of the connexion set which imply the existence of a hamiltonian cycle in the graph and we construct it in an explicit way.
引用
收藏
页码:1707 / 1714
页数:7
相关论文
共 50 条