Cayley graph;
Hamiltonian cycle;
Normal connection set;
05C45;
05C99;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
It has been conjecture that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g∈G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g\in G$$\end{document} we have that g-1Sg=S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g^{-1}Sg = S$$\end{document}. In this paper we present some conditions on the order of the elements of the connexion set which imply the existence of a hamiltonian cycle in the graph and we construct it in an explicit way.