Hamiltonian Cycles in Normal Cayley Graphs

被引:0
|
作者
Juan José Montellano-Ballesteros
Anahy Santiago Arguello
机构
[1] Instituto de Matemáticas,
[2] UNAM,undefined
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Cayley graph; Hamiltonian cycle; Normal connection set; 05C45; 05C99;
D O I
暂无
中图分类号
学科分类号
摘要
It has been conjecture that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document} we have that g-1Sg=S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^{-1}Sg = S$$\end{document}. In this paper we present some conditions on the order of the elements of the connexion set which imply the existence of a hamiltonian cycle in the graph and we construct it in an explicit way.
引用
收藏
页码:1707 / 1714
页数:7
相关论文
共 50 条
  • [21] Hamilton cycles in Trivalent Cayley graphs
    Wagh, MD
    Mo, JC
    INFORMATION PROCESSING LETTERS, 1996, 60 (04) : 177 - 181
  • [22] The second largest eigenvalue of normal Cayley graphs on symmetric groups generated by cycles
    Li, Yuxuan
    Xia, Binzhou
    Zhou, Sanming
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 206
  • [24] A NOTE ON HAMILTONIAN DECOMPOSITIONS OF CAYLEY-GRAPHS
    BAUMANN, U
    LESCH, M
    SCHMEICHEL, I
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1995, 65 : 105 - 111
  • [25] Class of Hamiltonian cayley graphs on the symmetric group
    Wang, Shiying
    Liu, Guangwu
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2002, 26 (03):
  • [26] ON EDGE-HAMILTONIAN CAYLEY-GRAPHS
    BAUMANN, U
    DISCRETE APPLIED MATHEMATICS, 1994, 51 (1-2) : 27 - 37
  • [27] On Cayley graphs of normal bands
    Gao, Xing
    Liu, Wenwen
    Luo, Yanfeng
    ARS COMBINATORIA, 2011, 100 : 409 - 419
  • [28] On Hamiltonian property of bi-Cayley graphs
    Duan, Fang
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3237 - 3243
  • [29] HAMILTONIAN CAYLEY-GRAPHS OF ORDER PQ
    CHEN, CC
    QUIMPO, N
    LECTURE NOTES IN MATHEMATICS, 1983, 1036 : 1 - 5
  • [30] Long cycles in Hamiltonian graphs
    António Girão
    Teeradej Kittipassorn
    Bhargav Narayanan
    Israel Journal of Mathematics, 2019, 229 : 269 - 285