Hamiltonian Cycles in Normal Cayley Graphs

被引:0
|
作者
Juan José Montellano-Ballesteros
Anahy Santiago Arguello
机构
[1] Instituto de Matemáticas,
[2] UNAM,undefined
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Cayley graph; Hamiltonian cycle; Normal connection set; 05C45; 05C99;
D O I
暂无
中图分类号
学科分类号
摘要
It has been conjecture that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document} we have that g-1Sg=S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^{-1}Sg = S$$\end{document}. In this paper we present some conditions on the order of the elements of the connexion set which imply the existence of a hamiltonian cycle in the graph and we construct it in an explicit way.
引用
收藏
页码:1707 / 1714
页数:7
相关论文
共 50 条
  • [1] Hamiltonian Cycles in Normal Cayley Graphs
    Jose Montellano-Ballesteros, Juan
    Santiago Arguello, Anahy
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1707 - 1714
  • [2] HAMILTONIAN NORMAL CAYLEY GRAPHS
    Jose Montellano-Ballesteros, Juan
    Santiago Arguello, Anahy
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (03) : 731 - 740
  • [3] HAMILTONIAN CYCLES IN CAYLEY COLOR GRAPHS
    KLERLEIN, JB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A654 - A654
  • [4] Hamiltonian Cycles in Cayley Graphs of Gyrogroups
    Maungchang, Rasimate
    Detphumi, Charawi
    Khachorncharoenkul, Prathomjit
    Suksumran, Teerapong
    MATHEMATICS, 2022, 10 (08)
  • [5] A SURVEY - HAMILTONIAN CYCLES IN CAYLEY-GRAPHS
    WITTE, D
    GALLIAN, JA
    DISCRETE MATHEMATICS, 1984, 51 (03) : 293 - 304
  • [6] Hamiltonian cycles and paths in Cayley graphs and digraphs - A survey
    Curran, SJ
    Gallian, JA
    DISCRETE MATHEMATICS, 1996, 156 (1-3) : 1 - 18
  • [7] Hamiltonian cycles in Cayley graphs of imprimitive complex reflection groups
    Kriloff, Cathy
    Lay, Terry
    DISCRETE MATHEMATICS, 2014, 326 : 50 - 60
  • [8] Flows that are sums of hamiltonian cycles in Cayley graphs on abelian groups
    Morris, DW
    Morris, J
    Moulton, DP
    DISCRETE MATHEMATICS, 2005, 299 (1-3) : 208 - 268
  • [9] ON HAMILTONIAN CYCLES IN CAYLEY-GRAPHS OF WREATH-PRODUCTS
    STONG, R
    DISCRETE MATHEMATICS, 1987, 65 (01) : 75 - 80
  • [10] ON THE GENERALIZED CAYLEY GRAPHS OF POWER SET RINGS AND HAMILTONIAN CYCLES
    Barani, Hamid Reza
    Khashyarmanesh, Kazem
    Rahbarnia, Freydoon
    ARS COMBINATORIA, 2018, 138 : 365 - 380