Further results on edge even graceful labeling of the join of two graphs

被引:0
|
作者
Mohamed R. Zeen El Deen
Nora A. Omar
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Suez University,undefined
[4] Department of Mathematics,undefined
[5] Faculty of Science,undefined
[6] Port-Said University,undefined
关键词
Complete bipartite graph; Wheel graph; Sunflower graph; Edge even graceful labeling; Join of two graphs; 05 C 78; 05 C 76; 05 C 90; 05 C 99;
D O I
10.1186/s42787-020-00077-5
中图分类号
学科分类号
摘要
In this paper, we investigated the edge even graceful labeling property of the join of two graphs. A function f is called an edge even graceful labeling of a graph G=(V(G),E(G)) with p=|V(G)| vertices and q=|E(G)| edges if f:E(G)→{2,4,...,2q} is bijective and the induced function f∗:V(G) →{0,2,4,⋯,2q−2 }, defined as f∗(x)=(∑xy∈E(G)f(xy))mod(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ f^{\ast }(x) = ({\sum \nolimits }_{xy \in E(G)} f(xy)~)~\mbox{{mod}}~(2k) $\end{document}, where k=max(p,q), is an injective function. Sufficient conditions for the complete bipartite graph Km,n =mK1+nK1 to have an edge even graceful labeling are established. Also, we introduced an edge even graceful labeling of the join of the graph K1 with the star graph K1,n, the wheel graph Wn and the sunflower graph sfn for all n∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \in \mathbb {N}$\end{document}. Finally, we proved that the join of the graph K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline {K}_{2}~$\end{document} with the star graph K1,n, the wheel graph Wn and the cyclic graph Cn are edge even graceful graphs.
引用
收藏
相关论文
共 50 条
  • [31] On Modular Edge-Graceful Graphs
    Fujie-Okamoto, Futaba
    Jones, Ryan
    Kolasinski, Kyle
    Zhang, Ping
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 901 - 912
  • [32] Super edge magic graceful graphs
    Marimuthu, G.
    Balakrishnan, M.
    INFORMATION SCIENCES, 2014, 287 : 140 - 151
  • [33] Further results on even vertex odd mean graphs
    Basher, M.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (01): : 93 - 117
  • [34] The Super Vertex-Graceful Labeling Of Graphs
    Gao, Zhen-Bin
    ARS COMBINATORIA, 2016, 124 : 389 - 400
  • [35] Farey Graceful Labeling of Graphs and Its Applications
    Kumar, Ajendra
    Kumar, Ajay
    Tyagi, Suraj
    Gupta, Neeraj
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2024,
  • [36] On Modular Edge-Graceful Graphs
    Futaba Fujie-Okamoto
    Ryan Jones
    Kyle Kolasinski
    Ping Zhang
    Graphs and Combinatorics, 2013, 29 : 901 - 912
  • [37] On (Super) Vertex-Graceful Labeling Of Graphs
    Gao, Zhen-Bin
    Zhang, Xiao-Dong
    Xu, Li-Juan
    ARS COMBINATORIA, 2016, 126 : 121 - 131
  • [38] ON k-GRACEFUL LABELING OF SOME GRAPHS
    Pradhan, P.
    Kumar, Kamesh
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (1-2): : 9 - 17
  • [39] A Metaheuristic Approach to the Graceful Labeling Problem of Graphs
    Mahmoudzadeh, Houra
    Eshghi, Kourosh
    2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 84 - +
  • [40] Further Results on Graceful Digraphs
    Hegde S.M.
    Shivarajkumar
    International Journal of Applied and Computational Mathematics, 2016, 2 (3) : 315 - 325