Further results on edge even graceful labeling of the join of two graphs

被引:0
|
作者
Mohamed R. Zeen El Deen
Nora A. Omar
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Suez University,undefined
[4] Department of Mathematics,undefined
[5] Faculty of Science,undefined
[6] Port-Said University,undefined
关键词
Complete bipartite graph; Wheel graph; Sunflower graph; Edge even graceful labeling; Join of two graphs; 05 C 78; 05 C 76; 05 C 90; 05 C 99;
D O I
10.1186/s42787-020-00077-5
中图分类号
学科分类号
摘要
In this paper, we investigated the edge even graceful labeling property of the join of two graphs. A function f is called an edge even graceful labeling of a graph G=(V(G),E(G)) with p=|V(G)| vertices and q=|E(G)| edges if f:E(G)→{2,4,...,2q} is bijective and the induced function f∗:V(G) →{0,2,4,⋯,2q−2 }, defined as f∗(x)=(∑xy∈E(G)f(xy))mod(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ f^{\ast }(x) = ({\sum \nolimits }_{xy \in E(G)} f(xy)~)~\mbox{{mod}}~(2k) $\end{document}, where k=max(p,q), is an injective function. Sufficient conditions for the complete bipartite graph Km,n =mK1+nK1 to have an edge even graceful labeling are established. Also, we introduced an edge even graceful labeling of the join of the graph K1 with the star graph K1,n, the wheel graph Wn and the sunflower graph sfn for all n∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \in \mathbb {N}$\end{document}. Finally, we proved that the join of the graph K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline {K}_{2}~$\end{document} with the star graph K1,n, the wheel graph Wn and the cyclic graph Cn are edge even graceful graphs.
引用
收藏
相关论文
共 50 条
  • [11] The Edge Odd Graceful Labeling of Water Wheel Graphs
    Aljohani, Mohammed
    Daoud, Salama Nagy
    AXIOMS, 2025, 14 (01)
  • [12] On edge-graceful labeling and deficiency for regular graphs
    Wang, Tao-Ming
    Zhang, Guang-Hui
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) : 105 - 111
  • [13] Odd-even graceful labeling of planar grid and prism graphs
    Basher, M.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (04): : 747 - 751
  • [14] VERTEX AND EDGE-VERTEX GRACEFUL LABELING ON NEUTROSOPHIC GRAPHS
    Vetrivel, G.
    Mullai, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 387 - 399
  • [15] SOME RESULTS ON GRACEFUL LABELING FOR FAMILIES OF SWASTIK GRAPHS
    Kaneria, V. J.
    Makadia, H. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2015, 16 (02): : 161 - 172
  • [16] Edge Odd Graceful Labeling of Cylinder and Torus Grid Graphs
    Daoud, S. N.
    IEEE ACCESS, 2019, 7 : 10568 - 10592
  • [17] Edge δ- Graceful Labeling for Some Cyclic-Related Graphs
    Zeen El Deen, Mohamed R.
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [18] Edge Odd Graceful Labeling in Some Wheel-Related Graphs
    Aljohani, Mohammed
    Daoud, Salama Nagy
    MATHEMATICS, 2024, 12 (08)
  • [19] ON EDGE-GRACEFUL AND SUPER-EDGE-GRACEFUL GRAPHS
    MITCHEM, J
    SIMOSON, A
    ARS COMBINATORIA, 1994, 37 : 97 - 111
  • [20] On Farey Edge Graceful Labeling
    Kumar, Ajay
    Gupta, Neeraj
    Kumar, Ajendra
    Tyagi, Suraj
    Kumar, Vipin
    IAENG International Journal of Applied Mathematics, 2024, 54 (11) : 2484 - 2490