Entropy Minimization for Many-Body Quantum Systems

被引:0
|
作者
Romain Duboscq
Olivier Pinaud
机构
[1] Institut de Mathématiques de Toulouse,Department of Mathematics
[2] UMR5219,undefined
[3] Université de Toulouse; CNRS,undefined
[4] INSA,undefined
[5] Colorado State University,undefined
来源
Journal of Statistical Physics | 2021年 / 185卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The problem considered here is motivated by a work by Nachtergaele and Yau where the Euler equations of fluid dynamics are derived from many-body quantum mechanics, see (Commun Math Phys 243(3):485–540, 2003). A crucial concept in their work is that of local quantum Gibbs states, which are quantum statistical equilibria with prescribed particle, current, and energy densities at each point of space (here Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}, d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document}). They assume that such local Gibbs states exist, and show that if the quantum system is initially in a local Gibbs state, then the system stays, in an appropriate asymptotic limit, in a Gibbs state with particle, current, and energy densities now solutions to the Euler equations. Our main contribution in this work is to prove that such local quantum Gibbs states can be constructed from prescribed densities under mild hypotheses, in both the fermionic and bosonic cases. The problem consists in minimizing the von Neumann entropy in the quantum grand canonical picture under constraints of local particle, current, and energy densities. The main mathematical difficulty is the lack of compactness of the minimizing sequences to pass to the limit in the constraints. The issue is solved by defining auxiliary constrained optimization problems, and by using some monotonicity properties of equilibrium entropies.
引用
收藏
相关论文
共 50 条
  • [31] Aspects of Entanglement in Quantum Many-Body Systems
    John W. Clark
    Hessam Habibian
    Aikaterini D. Mandilara
    Manfred L. Ristig
    Foundations of Physics, 2010, 40 : 1200 - 1220
  • [32] PERTURBATION EXPANSIONS FOR QUANTUM MANY-BODY SYSTEMS
    GELFAND, MP
    SINGH, RRP
    HUSE, DA
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) : 1093 - 1142
  • [33] Fisher entropy and uncertaintylike relationships in many-body systems
    Romera, E
    Angulo, JC
    Dehesa, JS
    PHYSICAL REVIEW A, 1999, 59 (05): : 4064 - 4067
  • [34] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [35] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [36] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [37] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [38] THE ERGODIC BEHAVIOUR OF QUANTUM MANY-BODY SYSTEMS
    VANHOVE, L
    PHYSICA, 1959, 25 (04): : 268 - 276
  • [39] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [40] Approach to typicality in many-body quantum systems
    Dubey, Shawn
    Silvestri, Luciano
    Finn, Justin
    Vinjanampathy, Sai
    Jacobs, Kurt
    PHYSICAL REVIEW E, 2012, 85 (01):