Entropy Minimization for Many-Body Quantum Systems

被引:0
|
作者
Romain Duboscq
Olivier Pinaud
机构
[1] Institut de Mathématiques de Toulouse,Department of Mathematics
[2] UMR5219,undefined
[3] Université de Toulouse; CNRS,undefined
[4] INSA,undefined
[5] Colorado State University,undefined
来源
Journal of Statistical Physics | 2021年 / 185卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The problem considered here is motivated by a work by Nachtergaele and Yau where the Euler equations of fluid dynamics are derived from many-body quantum mechanics, see (Commun Math Phys 243(3):485–540, 2003). A crucial concept in their work is that of local quantum Gibbs states, which are quantum statistical equilibria with prescribed particle, current, and energy densities at each point of space (here Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}, d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document}). They assume that such local Gibbs states exist, and show that if the quantum system is initially in a local Gibbs state, then the system stays, in an appropriate asymptotic limit, in a Gibbs state with particle, current, and energy densities now solutions to the Euler equations. Our main contribution in this work is to prove that such local quantum Gibbs states can be constructed from prescribed densities under mild hypotheses, in both the fermionic and bosonic cases. The problem consists in minimizing the von Neumann entropy in the quantum grand canonical picture under constraints of local particle, current, and energy densities. The main mathematical difficulty is the lack of compactness of the minimizing sequences to pass to the limit in the constraints. The issue is solved by defining auxiliary constrained optimization problems, and by using some monotonicity properties of equilibrium entropies.
引用
收藏
相关论文
共 50 条
  • [21] Scrambling of quantum information in quantum many-body systems
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [22] Randomness of Eigenstates of Many-Body Quantum Systems
    Sun, Li-Zhen
    Nie, Qingmiao
    Li, Haibin
    ENTROPY, 2019, 21 (03):
  • [23] THERMODYNAMICAL PROPERTIES OF QUANTUM MANY-BODY SYSTEMS
    GAGLIANO, ER
    BACCI, S
    PHYSICAL REVIEW LETTERS, 1989, 62 (10) : 1154 - 1156
  • [24] Quantum many-body systems out of equilibrium
    Eisert, J.
    Friesdorf, M.
    Gogolin, C.
    NATURE PHYSICS, 2015, 11 (02) : 124 - 130
  • [25] Thermodynamics of quantum dissipative many-body systems
    Cuccoli, A
    Fubini, A
    Tognetti, V
    Vaia, R
    PHYSICAL REVIEW E, 1999, 60 (01): : 231 - 241
  • [26] Quantum effects in many-body gravitating systems
    Golovko, VA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (29): : 6431 - 6446
  • [27] Effective Lagrangians for quantum many-body systems
    Jens O. Andersen
    Tomáš Brauner
    Christoph P. Hofmann
    Aleksi Vuorinen
    Journal of High Energy Physics, 2014
  • [28] Irreversible dynamics in quantum many-body systems
    Schmitt, Markus
    Kehrein, Stefan
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [29] Quantum Many-Body Systems in Thermal Equilibrium
    Alhambra, Alvaro M.
    PRX QUANTUM, 2023, 4 (04):
  • [30] Quantum hypothesis testing in many-body systems
    de Boer, Jan
    Godet, Victor
    Kastikainen, Jani
    Keski-Vakkuri, Esko
    SCIPOST PHYSICS CORE, 2021, 4 (02):