Orientation-dependent surface tension functions for surface energy minimizing calculations

被引:0
|
作者
Ellen J. Siem
W. Craig Carter
机构
[1] Department of Materials Science & Engineering,
[2] MIT,undefined
来源
关键词
Free Energy; Surface Tension; Energy Density; Surface Energy; Equivalence Class;
D O I
暂无
中图分类号
学科分类号
摘要
Previous numerical methods that calculate equilibrium particle shape to study thermodynamic and kinetic processes depend on interfacial (surface) free energy functions γ(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\skew7\hat{n}$$\end{document}) that have cubic symmetry and thus produce Wulff shapes W of cubic symmetry. This work introduces a construction yielding the minimal surface energy density γconvex(W) that can be determined for anyW. Each γ(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\skew7\hat{n}$$\end{document}) that belongs to the equivalence class γ(W) bounded by γconvex(W) can be used in an energy-minimizing calculation that depends only on W. For practical numerical calculations, this work gives two methods taking directional distance from specified orientation minima as a parameter to produce analytic forms of γ(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\skew7\hat{n}$$\end{document}) giving W as the equilibrium shape for (an otherwise unconstrained) fixed volume. Included are several two- and three-dimensional examples that demonstrate the application and utility of the model γ(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\skew7\hat{n}$$\end{document}) functions.
引用
收藏
页码:3107 / 3113
页数:6
相关论文
共 50 条
  • [41] Surface tension and surface energy in capillary theory
    V. V. Kashin
    K. M. Shakirov
    A. I. Poshevneva
    Steel in Translation, 2012, 42 (2) : 99 - 102
  • [42] The surface tension and the surface energy of saturated vapour
    Barbulescu, N
    Barbulescu, F
    KOLLOID-ZEITSCHRIFT, 1942, 101 (02): : 161 - 165
  • [43] First principles study on the surface- and orientation-dependent electronic structure of a WO3 nanowire
    Qin Yuxiang
    Hua Deyan
    Li Xiao
    JOURNAL OF SEMICONDUCTORS, 2013, 34 (06)
  • [44] Crystal plane orientation-dependent surface atom diffusion in sub-10-nm Au nanocrystals
    Jiang, Junnan
    Chu, Shufen
    Zhang, Yin
    Sun, Guangbin
    Jin, Junhui
    Zeng, Xiaoqin
    Chen, Mingwei
    Liu, Pan
    SCIENCE ADVANCES, 2024, 10 (21):
  • [45] Orientation-dependent surface morphology of crystalline silicon during anisotropic etching using a continuous cellular automaton
    Xing, Y.
    Gosalvez, M. A.
    Sato, K.
    Yi, H.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (01)
  • [46] First principles study on the surface- and orientation-dependent electronic structure of a WO3 nanowire
    秦玉香
    化得燕
    李晓
    Journal of Semiconductors, 2013, (06) : 5 - 10
  • [47] Surface effect on the size- and orientation-dependent elastic properties of single-crystal ZnO nanostructures
    Hu, Jun
    Pan, B. C.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (03)
  • [48] Electron mobility in multi-FinFET with a (111) channel surface fabricated by orientation-dependent wet etching
    Liu, YX
    Sugimata, E
    Masahara, M
    Endo, K
    Ishii, K
    Matsukawa, T
    Takashima, H
    Yamauchi, H
    Suzuki, E
    MICROELECTRONIC ENGINEERING, 2005, 80 : 390 - 393
  • [49] Quantitatively identical orientation-dependent ionization energy and electron affinity of diindenoperylene
    Han, W. N.
    Yonezawa, K.
    Makino, R.
    Kato, K.
    Hinderhofer, A.
    Murdey, R.
    Shiraishi, R.
    Yoshida, H.
    Sato, N.
    Ueno, N.
    Kera, S.
    APPLIED PHYSICS LETTERS, 2013, 103 (25)
  • [50] Dislocation contribution to acoustic nonlinearity: The effect of orientation-dependent line energy
    Cash, W. D.
    Cai, W.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)