Finite-Time Singularity Formation for Strong Solutions to the Boussinesq System

被引:0
|
作者
Tarek M. Elgindi
In-Jee Jeong
机构
[1] UC San Diego,Department of Mathematics
[2] Korea Institute for Advanced Study,School of Mathematics
来源
Annals of PDE | 2020年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
As a follow up to our work [27], we give examples of finite-energy and Lipschitz continuous velocity field and density (u0,ρ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_0,\rho _0)$$\end{document} which are C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document}-smooth away from the origin and belong to a natural local well-posedness class for the Boussinesq equation whose corresponding local solution becomes singular in finite time. That is, while the sup norm of the gradient of the velocity field and the density remain finite on the time interval t∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,1)$$\end{document}, both quantities become infinite as t→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow 1$$\end{document}. The key is to use scale-invariant solutions similar to those introduced in [27]. The proof consists of three parts: local well-posedness for the Boussinesq equation in critical spaces, the analysis of certain special infinite-energy solutions belonging to those critical spaces, and finally a cut-off argument to ensure finiteness of energy. All of this is done on spatial domains {(x1,x2):x1≥γ|x2|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(x_1,x_2): x_1 \ge \gamma |x_2|\}$$\end{document} for any γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > 0$$\end{document} so that we can get arbitrarily close to the half-space case. We show that the 2D Euler equation is globally well-posed in all of the situations we look at, so that the singularity is not coming from the domain or the lack of smoothness on the data but from the vorticity amplification due to the presence of a density gradient. It is conceivable that our methods can be adapted to produce finite-energy C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} solutions on R+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2_+$$\end{document} which become singular in finite time.
引用
收藏
相关论文
共 50 条
  • [31] Domain formation in finite-time quenches
    Bowick, M
    Momen, A
    PHYSICAL REVIEW D, 1998, 58 (08):
  • [32] Finite-time control for a UAV system based on finite-time disturbance observer
    Huang, Deqing
    Huang, Tianpeng
    Qin, Na
    Li, Yanan
    Yang, Yong
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 129
  • [33] A Hamiltonian description of finite-time singularity in Euler's fluid equations
    Morrison, Philip J.
    Kimura, Yoshifumi
    PHYSICS LETTERS A, 2023, 484
  • [34] Inflation in an exponential scalar model and finite-time singularity induced instability
    Odintsov, S. D.
    Oikonomou, V. K.
    PHYSICAL REVIEW D, 2015, 92 (02):
  • [35] Parametrically forced gravity waves in a circular cylinder and finite-time singularity
    Das, S. P.
    Hopfinger, E. J.
    JOURNAL OF FLUID MECHANICS, 2008, 599 : 205 - 228
  • [36] On the Collapsing Rate of the Kahler-Ricci Flow with Finite-Time Singularity
    Fong, Frederick Tsz-Ho
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1098 - 1107
  • [37] Finite-time attractivity of strong solutions for generalized nonlinear abstract Rayleigh-Stokes equations
    Tuan, Tran Van
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (02) : 291 - 301
  • [38] Finite-time singularity in the dynamics of the world population, economic and financial indices
    Johansen, A
    Sornette, D
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 294 (3-4) : 465 - 502
  • [39] On the Collapsing Rate of the Kähler–Ricci Flow with Finite-Time Singularity
    Frederick Tsz-Ho Fong
    The Journal of Geometric Analysis, 2015, 25 : 1098 - 1107
  • [40] Big bounce with finite-time singularity: The F(R) gravity description
    Odintsov, S. D.
    Oikonomou, V. K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (08):