As a follow up to our work [27], we give examples of finite-energy and Lipschitz continuous velocity field and density (u0,ρ0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(u_0,\rho _0)$$\end{document} which are C∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^\infty $$\end{document}-smooth away from the origin and belong to a natural local well-posedness class for the Boussinesq equation whose corresponding local solution becomes singular in finite time. That is, while the sup norm of the gradient of the velocity field and the density remain finite on the time interval t∈[0,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t\in [0,1)$$\end{document}, both quantities become infinite as t→1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t\rightarrow 1$$\end{document}. The key is to use scale-invariant solutions similar to those introduced in [27]. The proof consists of three parts: local well-posedness for the Boussinesq equation in critical spaces, the analysis of certain special infinite-energy solutions belonging to those critical spaces, and finally a cut-off argument to ensure finiteness of energy. All of this is done on spatial domains {(x1,x2):x1≥γ|x2|}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{(x_1,x_2): x_1 \ge \gamma |x_2|\}$$\end{document} for any γ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma > 0$$\end{document} so that we can get arbitrarily close to the half-space case. We show that the 2D Euler equation is globally well-posed in all of the situations we look at, so that the singularity is not coming from the domain or the lack of smoothness on the data but from the vorticity amplification due to the presence of a density gradient. It is conceivable that our methods can be adapted to produce finite-energy C∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^\infty $$\end{document} solutions on R+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^2_+$$\end{document} which become singular in finite time.