The complexity of topological conjugacy of pointed Cantor minimal systems

被引:0
|
作者
Burak Kaya
机构
[1] Rutgers University,Department of Mathematics
来源
Archive for Mathematical Logic | 2017年 / 56卷
关键词
Borel complexity; Topological conjugacy; Cantor minimal systems; Bratteli diagrams; Primary 03E15; Secondary 37B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the complexity of topological conjugacy of pointed Cantor minimal systems from the point of view of descriptive set theory. We prove that the topological conjugacy relation on pointed Cantor minimal systems is Borel bireducible with the Borel equivalence relation ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{{\mathbb {N}}}$$\end{document} defined by xΔR+y⇔{xi:i∈N}={yi:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \varDelta _{\mathbb {R}}^+y \Leftrightarrow \{x_i{:}\,i \in {\mathbb {N}}\}=\{y_i{:}\,i \in {\mathbb {N}}\}$$\end{document}. Moreover, we show that ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} is a lower bound for the Borel complexity of topological conjugacy of Cantor minimal systems. Finally, we interpret our results in terms of properly ordered Bratteli diagrams and discuss some applications.
引用
收藏
页码:215 / 235
页数:20
相关论文
共 50 条
  • [41] Orbit equivalence of Cantor minimal systems and their continuous spectra
    Giordano, T.
    Handelman, D.
    Hosseini, M.
    MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (3-4) : 1199 - 1218
  • [42] Flow-orbit equivalence for minimal Cantor systems
    Kosek, Wojciech
    Ormes, Nicholas
    Rudolph, Daniel J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 481 - 500
  • [43] Fundamental group of uniquely ergodic Cantor minimal systems
    Nawata, Norio
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 746 - 758
  • [44] NON-HOMOGENEOUS EXTENSIONS OF CANTOR MINIMAL SYSTEMS
    Deeley, Robin J.
    Putnam, Ian F.
    Strung, Karen R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 2081 - 2089
  • [45] Minimal Dynamical Systems on the Product of the Cantor Set and the Circle
    Huaxin Lin
    Hiroki Matui
    Communications in Mathematical Physics, 2005, 257 : 425 - 471
  • [46] Orbit equivalence of Cantor minimal systems and their continuous spectra
    T. Giordano
    D. Handelman
    M. Hosseini
    Mathematische Zeitschrift, 2018, 289 : 1199 - 1218
  • [47] Approximate Topological Conjugacy
    Xin, Yue
    Hou, Bingzhe
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1055 - 1066
  • [48] TOPOLOGICAL CONJUGACY OF RELATIVE TOPOLOGICAL DYNAMICS
    Molaei, M. R.
    Ghazanfari, B.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2009, 7 (01) : 81 - 90
  • [49] Approximate Topological Conjugacy
    Yue Xin
    Bingzhe Hou
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1055 - 1066
  • [50] TOPOLOGICAL CONJUGACY FOR AFFINE-LINEAR FLOWS AND CONTROL SYSTEMS
    Colonius, Fritz
    Santana, Alexandre J.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (03) : 847 - 857