The complexity of topological conjugacy of pointed Cantor minimal systems

被引:0
|
作者
Burak Kaya
机构
[1] Rutgers University,Department of Mathematics
来源
关键词
Borel complexity; Topological conjugacy; Cantor minimal systems; Bratteli diagrams; Primary 03E15; Secondary 37B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the complexity of topological conjugacy of pointed Cantor minimal systems from the point of view of descriptive set theory. We prove that the topological conjugacy relation on pointed Cantor minimal systems is Borel bireducible with the Borel equivalence relation ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{{\mathbb {N}}}$$\end{document} defined by xΔR+y⇔{xi:i∈N}={yi:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \varDelta _{\mathbb {R}}^+y \Leftrightarrow \{x_i{:}\,i \in {\mathbb {N}}\}=\{y_i{:}\,i \in {\mathbb {N}}\}$$\end{document}. Moreover, we show that ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} is a lower bound for the Borel complexity of topological conjugacy of Cantor minimal systems. Finally, we interpret our results in terms of properly ordered Bratteli diagrams and discuss some applications.
引用
收藏
页码:215 / 235
页数:20
相关论文
共 50 条
  • [21] Formal aspects of parametrized topological complexity and its pointed version
    Garcia-Calcines, J. M.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023, 15 (04) : 1129 - 1148
  • [22] Minimal dynamical systems and approximate conjugacy
    Huaxin Lin
    Hiroki Matui
    Mathematische Annalen, 2005, 332 : 795 - 822
  • [23] Minimal dynamical systems and approximate conjugacy
    Lin, HX
    Matui, H
    MATHEMATISCHE ANNALEN, 2005, 332 (04) : 795 - 822
  • [24] Full groups of Cantor minimal systems
    Giordano, T
    Putnam, IF
    Skau, CF
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 111 (1) : 285 - 320
  • [25] Full groups of Cantor minimal systems
    Thierry Giordano
    Ian F. Putnam
    Christian F. Skau
    Israel Journal of Mathematics, 1999, 111 : 285 - 320
  • [26] Real coboundaries for minimal Cantor systems
    Ormes, NS
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 195 (02) : 453 - 476
  • [27] Minimal Cantor systems and unimodal maps
    Bruin, H
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (3-4) : 305 - 318
  • [28] All minimal Cantor systems are slow
    Boronski, Jan P.
    Kupka, Jiri
    Oprocha, Piotr
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (06) : 937 - 944
  • [29] TOPOLOGICAL CONJUGACY OF LINEAR SYSTEMS ON LIE GROUPS
    Da Silva, Adriano
    Santana, Alexandre J.
    Stelmastchuk, Simao N.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3411 - 3421
  • [30] On linear topological conjugacy of Lur'e systems
    Wu, CW
    Chua, LO
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (02): : 158 - 161