In this paper, we analyze the complexity of topological conjugacy of pointed Cantor minimal systems from the point of view of descriptive set theory. We prove that the topological conjugacy relation on pointed Cantor minimal systems is Borel bireducible with the Borel equivalence relation ΔR+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} on RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^{{\mathbb {N}}}$$\end{document} defined by xΔR+y⇔{xi:i∈N}={yi:i∈N}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \varDelta _{\mathbb {R}}^+y \Leftrightarrow \{x_i{:}\,i \in {\mathbb {N}}\}=\{y_i{:}\,i \in {\mathbb {N}}\}$$\end{document}. Moreover, we show that ΔR+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} is a lower bound for the Borel complexity of topological conjugacy of Cantor minimal systems. Finally, we interpret our results in terms of properly ordered Bratteli diagrams and discuss some applications.
机构:
Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, POB 14115-134, Tehran, Iran
Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, IranTarbiat Modares Univ, Fac Math Sci, Dept Pure Math, POB 14115-134, Tehran, Iran
Golestani, Nasser
Hosseini, Maryam
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, IranTarbiat Modares Univ, Fac Math Sci, Dept Pure Math, POB 14115-134, Tehran, Iran