Multiplicity of Solutions for an Elliptic Kirchhoff Equation

被引:0
|
作者
David Arcoya
José Carmona
Pedro J. Martínez-Aparicio
机构
[1] Universidad de Granada,Departamento de Análisis Matemático, Campus Fuentenueva S/N
[2] Universidad de Almería Ctra. Sacramento s/n,Departamento de Matemáticas
来源
关键词
Elliptic Kirchhoff equation; Continua of solutions; Multiplicity of solutions; Primary 35J25; 35J60; Secondary 58E07; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of positive solution to the Kirchhoff elliptic problem -1+γG′‖∇u‖L2(Ω)2Δu=λf(u)inΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\left( 1+\gamma G'\left( \Vert \nabla u\Vert ^2_{L^2(\Omega )}\right) \right) \Delta u = \lambda f(u) &{} \text{ in } \; \Omega ,\\ u = 0 &{} \text{ on } \; \partial \Omega ,\\ \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an open, bounded subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} (N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}), f is a locally Lipschitz continuous real function, f(0)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)\ge 0$$\end{document}, G′∈C(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'\in C(\mathbb {R}^+)$$\end{document} and G′≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'\ge 0$$\end{document}. We prove the existence of at least two solutions with L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (\Omega )$$\end{document} norm between two consecutive zeroes of f for large λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
页码:679 / 689
页数:10
相关论文
共 50 条
  • [21] Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation
    Lin Xu
    Feng Li
    Qilin Xie
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [22] Existence and multiplicity of solutions for a p(x)-Kirchhoff type equation
    Afrouzi, G. A.
    Mirzapour, M.
    Chung, N. T.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 95 - 109
  • [23] Multiplicity of solutions for the Kirchhoff equation with critical nonlinearity in high dimension
    Tang, BiYun
    Lan, Yongyi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 13133 - 13145
  • [24] Existence and Multiplicity of Solutions for Fractional κ(ξ)-Kirchhoff-Type Equation
    Sousa, J. Vanterler da C.
    Kucche, Kishor D.
    Nieto, Juan J.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [25] Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation
    Xu, Lin
    Li, Feng
    Xie, Qilin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [26] Existence and multiplicity of solutions for a locally coercive elliptic equation
    Arcoya, David
    de Paiva, Francisco Odair
    Mendoza, Jose M.
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 5 (02):
  • [27] The Multiplicity of Solutions for a Certain Class of Fractional Elliptic Equation
    Zhang, Shifeng
    Jia, Zhiyang
    Wang, Jihe
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, SIMULATION AND MODELLING, 2016, 41 : 76 - 78
  • [28] Multiplicity of solutions for elliptic problems of p-Kirchhoff type with critical exponent
    Chenxing Zhou
    Yueqiang Song
    Boundary Value Problems, 2015
  • [29] Multiplicity of weak solutions in double phase Kirchhoff elliptic problems with Neumann conditions
    Ahmed, Ahmed
    Vall, Mohamed Saad Bouh Elemine
    Boulaaras, Salah
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [30] New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems
    Cheng, Bitao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 488 - 495