Multiplicity of weak solutions in double phase Kirchhoff elliptic problems with Neumann conditions

被引:0
|
作者
Ahmed, Ahmed [1 ]
Vall, Mohamed Saad Bouh Elemine [2 ]
Boulaaras, Salah [3 ]
机构
[1] Univ Nouakchott, Fac Sci & Technol, Dept Math & Comp Sci, Nouakchott, Mauritania
[2] Univ Nouakchott, Profess Univ Inst, Dept Appl Math & Ind Engn, Nouakchott, Mauritania
[3] Qassim Univ, Coll Sci, Dept Math, Buraydah, Saudi Arabia
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
关键词
Double phase problems; Multiple solutions; Kirchhoff function; Weak solutions to PDEs; Nonlinear equations; VARIABLE EXPONENT; EXISTENCE; EQUATIONS; INEQUALITIES; REGULARITY; CONVECTION; OPERATORS; FLOW;
D O I
10.1186/s13661-025-02043-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of weak solutions for a class of double phase Kirchhoff elliptic problems under Neumann boundary conditions. The problem is characterized by the equation {-K1(integral Lambda A(y,del zeta)dy)diva(y,del zeta)-K2(integral Lambda B(y,del zeta)dy)divb(y,del zeta)+K1(integral Lambda 1 nu 1(y)|zeta|nu 1(y)dy)|zeta|nu 1(y)-2 zeta+K2(integral Lambda 1 nu 2(y)|zeta|nu 2(y)dy)|zeta|nu 2(y)-2 zeta=theta(y,zeta)in Lambda a(y,del zeta)& sdot;n ->=b(y,del zeta)& sdot;n ->=0,on partial derivative Lambda,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left \{ \textstyle\begin{array}{l@{\quad}l} -K_{1}\left (\int _{\Lambda} A(y, \nabla \zeta ) \mathrm{d} y\right ) \operatorname{div} a(y, \nabla \zeta ) -K_{2}\left (\int _{\Lambda} B(y, \nabla \zeta ) \mathrm{d} y\right ) \operatorname{div} b(y, \nabla \zeta ) \\ +K_{1}\left (\int _{\Lambda} \frac{1}{\nu _{1}(y)}| \zeta |<^>{\nu _{1}(y)} \mathrm{d} y\right )| \zeta |<^>{\nu _{1}(y)-2} \zeta \\ \quad{} +K_{2}\left ( \int _{\Lambda} \frac{1}{\nu _{2}(y)}| \zeta |<^>{\nu _{2}(y)} \mathrm{d} y\right )| \zeta |<^>{\nu _{2}(y)-2} \zeta =\theta (y, \zeta ) &\text{in } \Lambda \\ a(y, \nabla \zeta )\cdot \vec{n}=b(y, \nabla \zeta )\cdot \vec{n}=0, & \text{on } \partial \Lambda ,\end{array}\displaystyle \right . $$\end{document} where K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{1} $\end{document} and K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{2} $\end{document} are Kirchhoff-type functions, and the nonlinearities A(y,del zeta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(y, \nabla \zeta ) $\end{document} and B(y,del zeta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B(y, \nabla \zeta ) $\end{document} exhibit double phase behavior. Employing a theorem proposed by B. Ricceri, which extends a more general variational principle, we confirm the existence of countless weak solutions for this complex system. Additionally, we present examples that illustrate the applicability of the theoretical results to specific cases. The findings contribute to the broader understanding of non-standard growth conditions and their implications in the study of Kirchhoff-type elliptic problems.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] EXISTENCE AND MULTIPLICITY OF WEAK SOLUTIONS FOR PERTURBED KIRCHHOFF TYPE ELLIPTIC PROBLEMS WITH HARDY POTENTIAL
    Roudbari, S. P.
    Afrouzi, G. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 500 - 511
  • [2] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR p ( x ) -KIRCHHOFF TYPE PROBLEMS WITH NONHOMOGENEOUS NEUMANN CONDITIONS
    Gharehgazlouei, Fariba
    Heidarkhani, Shapour
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2024, 16 (02): : 135 - 150
  • [3] MULTIPLICITY OF WEAK SOLUTIONS FOR A (P(X), Q(X))-KIRCHHOFF EQUATION WITH NEUMANN BOUNDARY CONDITIONS
    Ahmed, A.
    Vall, Mohamed Saad Bouh Elemine
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 2441 - 2465
  • [4] Multiplicity of Solutions for Neumann Problems for Semilinear Elliptic Equations
    An, Yu-Cheng
    Suo, Hong-Min
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Weak and Positive Solutions for Kirchhoff Type Elliptic Problems
    Elmehdi Zaouche
    Mediterranean Journal of Mathematics, 2021, 18
  • [6] Weak and Positive Solutions for Kirchhoff Type Elliptic Problems
    Zaouche, Elmehdi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [7] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR p-KIRCHHOFF-TYPE NEUMANN PROBLEMS
    Jiang, Qin
    Ma, Sheng
    Pasca, Daniel
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 107 - 121
  • [8] Multiplicity of Solutions for an Elliptic Kirchhoff Equation
    David Arcoya
    José Carmona
    Pedro J. Martínez-Aparicio
    Milan Journal of Mathematics, 2022, 90 : 679 - 689
  • [9] Multiplicity of Solutions for an Elliptic Kirchhoff Equation
    Arcoya, David
    Carmona, Jose
    Martinez-Aparicio, Pedro J.
    MILAN JOURNAL OF MATHEMATICS, 2022, 90 (02) : 679 - 689
  • [10] A multiplicity theorem for double phase degenerate Kirchhoff problems
    Cen, Jinxia
    Vetro, Calogero
    Zeng, Shengda
    APPLIED MATHEMATICS LETTERS, 2023, 146