Multiplicity of Solutions for an Elliptic Kirchhoff Equation

被引:0
|
作者
David Arcoya
José Carmona
Pedro J. Martínez-Aparicio
机构
[1] Universidad de Granada,Departamento de Análisis Matemático, Campus Fuentenueva S/N
[2] Universidad de Almería Ctra. Sacramento s/n,Departamento de Matemáticas
来源
关键词
Elliptic Kirchhoff equation; Continua of solutions; Multiplicity of solutions; Primary 35J25; 35J60; Secondary 58E07; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of positive solution to the Kirchhoff elliptic problem -1+γG′‖∇u‖L2(Ω)2Δu=λf(u)inΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\left( 1+\gamma G'\left( \Vert \nabla u\Vert ^2_{L^2(\Omega )}\right) \right) \Delta u = \lambda f(u) &{} \text{ in } \; \Omega ,\\ u = 0 &{} \text{ on } \; \partial \Omega ,\\ \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an open, bounded subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} (N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}), f is a locally Lipschitz continuous real function, f(0)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)\ge 0$$\end{document}, G′∈C(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'\in C(\mathbb {R}^+)$$\end{document} and G′≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'\ge 0$$\end{document}. We prove the existence of at least two solutions with L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (\Omega )$$\end{document} norm between two consecutive zeroes of f for large λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
页码:679 / 689
页数:10
相关论文
共 50 条
  • [1] Multiplicity of Solutions for an Elliptic Kirchhoff Equation
    Arcoya, David
    Carmona, Jose
    Martinez-Aparicio, Pedro J.
    MILAN JOURNAL OF MATHEMATICS, 2022, 90 (02) : 679 - 689
  • [2] Existence, multiplicity, and nonexistence of solutions for a p-Kirchhoff elliptic equation on RN
    Liu, Lihua
    Zhou, Chunxiu
    BOUNDARY VALUE PROBLEMS, 2017,
  • [3] Multiplicity of solutions for a p-Kirchhoff equation
    Jincheng Huang
    Zhaomin Jiang
    Zhiyan Li
    Jun Wang
    Boundary Value Problems, 2017
  • [4] Multiplicity of solutions for a p-Kirchhoff equation
    Huang, Jincheng
    Jiang, Zhaomin
    Li, Zhiyan
    Wang, Jun
    BOUNDARY VALUE PROBLEMS, 2017,
  • [5] MULTIPLICITY OF SOLUTIONS FOR A QUASILINEAR ELLIPTIC EQUATION
    Wu, Ke
    Wu, Xian
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 549 - 559
  • [6] Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations
    Colasuonno, Francesca
    Pucci, Patrizia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5962 - 5974
  • [7] MULTIPLICITY OF SOLUTIONS FOR A KIRCHHOFF EQUATION WITH SUBCRITICAL OR CRITICAL GROWTH
    Figueiredo, Giovany M.
    Santos Junior, Joao R.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (9-10) : 853 - 868
  • [8] Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation
    Xiaoming He
    Wenming Zou
    manuscripta mathematica, 2019, 158 : 159 - 203
  • [9] Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation
    He, Xiaoming
    Zou, Wenming
    MANUSCRIPTA MATHEMATICA, 2019, 158 (1-2) : 159 - 203
  • [10] EXISTENCE AND MULTIPLICITY SOLUTIONS FOR A NONLOCAL EQUATION OF KIRCHHOFF TYPE
    Li, Lin
    Sun, Jijiang
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2018, 10 (04): : 369 - 386