Comparative life cycle assessment of lithium-ion batteries with lithium metal, silicon nanowire, and graphite anodes

被引:0
|
作者
Zheshan Wu
Defei Kong
机构
[1] Peking University Shenzhen Graduate School,Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy
[2] Peking University Shenzhen Graduate School,School of Advanced Materials
关键词
Lithium metal anode; Silicon nanowire anode; Environmental impact assessment; Specific energy; Lithium-ion battery;
D O I
暂无
中图分类号
学科分类号
摘要
Lithium metal and silicon nanowires, with higher specific capacity than graphite, are the most promising alternative advanced anode materials for use in next-generation batteries. By comparing three batteries designed, respectively, with a lithium metal anode, a silicon nanowire anode, and a graphite anode, the authors strive to analyse the life cycle of different negative electrodes with different specific capacities and compare their cradle-to-gate environmental impacts. This paper finds that a higher specific capacity of the negative material causes lower environmental impact of the same battery. The battery with a lithium metal anode has a lower environmental impact than the battery with a graphite anode. Surprisingly, although the silicon nanowire anode has a higher specific energy than graphite, the production of a battery with silicon nanowires causes a higher environmental impact than the production of a battery with graphite. In fact, the high specific energy of silicon nanowires can decrease the environmental impact of a battery with silicon nanowires, but silicon nanowire preparation causes extremely high emissions. Therefore, batteries with lithium metal anodes are the most environmentally friendly lithium-ion batteries. Batteries with lithium metal anodes could be the next generation of environmentally friendly batteries for electric vehicles.
引用
收藏
页码:1233 / 1244
页数:11
相关论文
共 50 条
  • [41] Leveraging Titanium to Enable Silicon Anodes in Lithium-Ion Batteries
    Lee, Pui-Kit
    Tahmasebi, Mohammad H.
    Ran, Sijia
    Boles, Steven T.
    Yu, Denis Y. W.
    SMALL, 2018, 14 (41)
  • [42] Carbon scaffold structured silicon anodes for lithium-ion batteries
    Guo, Juchen
    Chen, Xilin
    Wang, Chunsheng
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) : 5035 - 5040
  • [43] Challenges and prospects of nanosized silicon anodes in lithium-ion batteries
    Zhao, Xiuyun
    Lehto, Vesa-Pekka
    NANOTECHNOLOGY, 2021, 32 (04)
  • [44] Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder
    Astrova, E. V.
    Voronkov, V. B.
    Rumyantsev, A. M.
    Nashchekin, A. V.
    Parfen'eva, A. V.
    Lozhkina, D. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2019, 55 (03) : 184 - 193
  • [45] Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries
    E. V. Astrova
    G. V. Li
    A. M. Rumyantsev
    V. V. Zhdanov
    Semiconductors, 2016, 50 : 276 - 283
  • [46] Delineating the Effects of Transition-Metal-Ion Dissolution on Silicon Anodes in Lithium-Ion Batteries
    Torres, Rudy Martin
    Manthiram, Arumugam
    SMALL, 2024, 20 (27)
  • [47] Cross-linkable binder for composite silicon-graphite anodes in lithium-ion batteries
    Zhang, Yi-Tong
    Xue, Jin-Xin
    Wang, Rui
    Jia, Si-Xin
    Zhou, Jian-Jun
    Li, Lin
    GIANT, 2024, 19
  • [48] Life cycle assessment of lithium-ion batteries for greenhouse gas emissions
    Liang, Yuhan
    Su, Jing
    Xi, Beidou
    Yu, Yajuan
    Ji, Danfeng
    Sun, Yuanyuan
    Cui, Chifei
    Zhu, Jianchao
    RESOURCES CONSERVATION AND RECYCLING, 2017, 117 : 285 - 293
  • [49] Investigation of the Direct Contact Prelithiation of Silicon-Graphite Composite Anodes for Lithium-Ion Batteries
    Stumper, Benedikt
    Mayr, Andreas
    Mosler, Kathrin
    Kriegler, Johannes
    Daub, Ruediger
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (06)
  • [50] Electrochemical characteristics and energy densities of lithium-ion batteries using mesoporous silicon and graphite as anodes
    Park, Hyejeong
    Yoon, Naeun
    Kang, DongHwan
    Young, Chohee
    Lee, Jung Kyoo
    ELECTROCHIMICA ACTA, 2020, 357 (357)