Positivity and Completeness of Invariant Metrics

被引:0
|
作者
Taeyong Ahn
Hervé Gaussier
Kang-Tae Kim
机构
[1] POSTECH,Center for Geometry and its Applications
[2] Univ. Grenoble Alpes,Center for Geometry and its Applications and Department of Mathematics
[3] IF,undefined
[4] CNRS,undefined
[5] IF,undefined
[6] POSTECH,undefined
来源
关键词
Holomorphic peak functions; Invariant metrics; Unbounded domains; 32A40; 32F45; 32T40;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method for constructing global holomorphic peak functions from local holomorphic support functions for broad classes of unbounded domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}. As an application, we establish a method for showing the positivity and completeness of invariant metrics including the Bergman metric mainly for the unbounded domains.
引用
收藏
页码:1173 / 1185
页数:12
相关论文
共 50 条