Some results on surjectivity of augmented semi-elliptic differential operators

被引:0
|
作者
L. Frerick
T. Kalmes
机构
[1] FB IV,
[2] Mathematik,undefined
[3] Universität Trier,undefined
[4] Bergische Universität Wuppertal,undefined
[5] FB Mathematik und Naturwissenschaften,undefined
来源
Mathematische Annalen | 2010年 / 347卷
关键词
35D05; 35H99; 46A63;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a semi-elliptic polynomial P on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} surjectivity of P(D) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{D}'(\Omega)}$$\end{document} implies surjectivity of the augmented operator P+(D) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{D}'(\Omega\times\mathbb{R})}$$\end{document}, where P+(x1, x2, x3) := P(x1, x2). For arbitrary dimension n we give a sufficient geometrical condition on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset\mathbb{R}^n}$$\end{document} such that an analogous implication is true for semi-elliptic P. Moreover, we give an alternative proof of a result due to Vogt which says that for elliptic P the operator P+(D) is surjective if this is true for P(D).
引用
收藏
页码:81 / 94
页数:13
相关论文
共 50 条
  • [31] An Omori-Yau maximum principle for semi-elliptic operators and Liouville-type theorems
    Hong, Kyusik
    Sung, Chanyoung
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (04) : 533 - 539
  • [32] Removable singularities of solutions of semi-elliptic equations
    A. V. Pokrovskii
    [J]. Differential Equations, 2009, 45 : 209 - 216
  • [33] On normality of some elliptic functional differential operators
    A. L. Skubachevskii
    [J]. Functional Analysis and Its Applications, 1997, 31 : 273 - 277
  • [34] On spectra of some linear elliptic differential operators
    Tyurin V.M.
    [J]. Journal of Mathematical Sciences, 2005, 126 (6) : 1654 - 1657
  • [35] On normality of some elliptic functional differential operators
    Skubachevskii, AL
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1997, 31 (04) : 273 - 277
  • [36] A theoretical model of semi-elliptic surface crack growth
    Shi Kaikai
    Cai Lixun
    Chen Long
    Bao Chen
    [J]. Chinese Journal of Aeronautics, 2014, (03) : 730 - 734
  • [37] ON STRESS-CONCENTRATION OF A SEMI-ELLIPTIC EDGE NOTCH
    LING, CB
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1985, 319 (03): : 341 - 357
  • [38] DETERMINATION OF CRACK RESISTANCE OF A TANK WITH A SEMI-ELLIPTIC CRACK
    Pyskunov, S. O.
    Shkryl, O. O.
    Maksimyuk, Yu, V
    [J]. OPIR MATERIALIV I TEORIA SPORUD-STRENGTH OF MATERIALS AND THEORY OF STRUCTURES, 2021, (106): : 14 - 21
  • [39] REGULAR SEMI-ELLIPTIC BOUNDARY-VALUE PROBLEMS
    ARTINO, RA
    BARROSNETO, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (01) : 40 - 57
  • [40] Hagen-Poiseuille Flow in Semi-Elliptic Microchannels
    Alassar, Rajai S.
    Abushoshah, Mohammed
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (12):