Some results on surjectivity of augmented semi-elliptic differential operators

被引:0
|
作者
L. Frerick
T. Kalmes
机构
[1] FB IV,
[2] Mathematik,undefined
[3] Universität Trier,undefined
[4] Bergische Universität Wuppertal,undefined
[5] FB Mathematik und Naturwissenschaften,undefined
来源
Mathematische Annalen | 2010年 / 347卷
关键词
35D05; 35H99; 46A63;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a semi-elliptic polynomial P on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} surjectivity of P(D) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{D}'(\Omega)}$$\end{document} implies surjectivity of the augmented operator P+(D) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{D}'(\Omega\times\mathbb{R})}$$\end{document}, where P+(x1, x2, x3) := P(x1, x2). For arbitrary dimension n we give a sufficient geometrical condition on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset\mathbb{R}^n}$$\end{document} such that an analogous implication is true for semi-elliptic P. Moreover, we give an alternative proof of a result due to Vogt which says that for elliptic P the operator P+(D) is surjective if this is true for P(D).
引用
收藏
页码:81 / 94
页数:13
相关论文
共 50 条