Comparison and vanishing theorems for Kähler manifolds

被引:0
|
作者
Lei Ni
Fangyang Zheng
机构
[1] University of California,Department of Mathematics
[2] San Diego,Department of Mathematics
[3] The Ohio State University,undefined
[4] Zhejiang Normal University,undefined
关键词
Primary 53C55; 32Q15; Secondary 32Q10; 32Q40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider orthogonal Ricci curvature Ric⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric^{\perp }$$\end{document} for Kähler manifolds, which is a curvature condition closely related to Ricci curvature and holomorphic sectional curvature. We prove comparison theorems and a vanishing theorem related to these curvature conditions, and construct various examples to illustrate subtle relationship among them. As a consequence of the vanishing theorem, we show that any compact Kähler manifold with positive orthogonal Ricci curvature must be projective. This result complements a recent result of Yang (RC-positivity, rational connectedness, and Yau’s conjecture. arXiv:1708.06713) on the projectivity under the positivity of holomorphic sectional curvature. The simply-connectedness is shown when the complex dimension is smaller than five. Further study of compact Kähler manifolds with Ric⊥>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric^{\perp }>0$$\end{document} is carried in Ni et al. (Manifolds with positive orthogonal Ricci curvature. arXiv:1806.10233).
引用
收藏
相关论文
共 50 条