On the Derivation of Mean-Field Percolation Critical Exponents from the Triangle Condition

被引:0
|
作者
Tom Hutchcroft
机构
[1] California Institute of Technology,The Division of Physics, Mathematics and Astronomy
来源
关键词
Percolation; Critical phenomena; Mean-field; Differential inequalities; Hierarchical models; Diagrammatic estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new derivation of mean-field percolation critical behaviour from the triangle condition that is quantitatively much better than previous proofs when the triangle diagram ∇pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _{p_c}$$\end{document} is large. In contrast to earlier methods, our approach continues to yield bounds of reasonable order when the triangle diagram ∇p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _p$$\end{document} is unbounded but diverges slowly as p↑pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \uparrow p_c$$\end{document}, as is expected to occur in percolation on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} at the upper-critical dimension d=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=6$$\end{document}. Indeed, we show in particular that if the triangle diagram diverges polylogarithmically as p↑pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \uparrow p_c$$\end{document} then mean-field critical behaviour holds to within a polylogarithmic factor. We apply the methods we develop to deduce that for long-range percolation on the hierarchical lattice, mean-field critical behaviour holds to within polylogarithmic factors at the upper-critical dimension. As part of the proof, we introduce a new method for comparing diagrammatic sums on general transitive graphs that may be of independent interest.
引用
收藏
相关论文
共 50 条